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ABSTRACT

3 A new coupled parabolic-marching method was developed to solve the

three-dimensional incompressible Navier-Stokes equation for turbulent

turbomachinery flows. Earlier space-marching methods were analyzed to

determine their global stability during multiple passes of the

computational domain. The methods were found to be unconditionally

unstable even when an extra equation for the pressure, namely the

Poisson equation for the pressure, was used between passes of the

domain. Relaxation of one constraint during the solution process was

found to be necessary for the successful calculation of a complex flow.

Thus, the method of pseudocompressibility was introduced into the

partially parabolized Navier-Stokes equation to relax the mass flow

constraint during the iterative process. This new method was found to

be stable during a forward-marching integration as well as globally

stable during successive passes of the domain. With consistent

discretization, the new method was found .o be convergent.

Also investigated was the splitting error which arises from the use

of the LBI scheme in a three-dimensional parabolic-marching method. The

splitting error was found to be extremely important for coarse grid

computations and was analyzed and demonstrated for a strongly curved

duct flow. A simple iterative solution method was developed which

reduces the effect of the splitting error for three-dimensional

computations.

Several turbulence models were introduced for the computation of

turbulent flows. The three models used were the algebraic eddy

viscosity model, the two equation k-e model, and the algebraic Reynolds

stress model (ARSM) which introduces the strong effect of rotation on
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the turbulence structure.

The new parabolic-marching method using the new solution method was

used to compute several flows including the laminar and turbulent flow

in an S-shaped duct and the turbulent flow in an end wall cascade and

compressor rotor. For the laminar flow, the agreement with the analysis

and the experimental data was excellent. For the turbulent flows, the

pressure distributions were accurately predicted as were blade and end

wall boundary layers and wakes. Prediction accuracy for the rotor flow

was adequate with good resolution of the suction side boundary layers,

secondary flow, and pressure losses at the rotor exit.
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CHAPTER 1

INTRODUCTION

1.1 The Problem

The flow in turbomachinery is very complex. The description of the

inviscid flow is generally all that is required to determine the gross

properties of the geometry, such as blade loading. Some important

features of the flow, however, are due to the viscous nature of the

actual fluid flow, e.g., pressure losses and inefficiencies. Some of

the viscous flow phenomena found in a typical axial flow turbomachine

can be seen in Figure 1.1. These include the three-dimensional blade

boundary layer, the three-dimensional wake, and overturning of the flow

in the end-wall region. If the geometry in question is a rotor, the

flow is further complicated by the tip leakage flow and the interaction

* of the leakage jet and the main flow.

For three-dimensional incompressible flow, three momentum transport

equations and one mass conservation equation, collectively known as the

Navier-Stokes equation, govern a continuous flow. The Navier-Stokes

equation can be simplified to give algebraic relations for the dependent

variables of static pressure and flow velocity or can be written as a

single scalar Poisson equation for a potential function. Such forms

cannot capture the above mentioned viscous flow phenomena. The full

Navier-Stokes equation is a second order, non-linear partial

differential equation that cannot be solved exactly. Thus, researchers

have long used numerical methods to solve the equation on discrete



2

U

'.4

0)

-40

:3
C,
Cu
E
0

n
L

(V
03

C
(V

0
'-4~If;0
(44
0

a)
I-

4)
U 0) CV00 2

0

O

0

0 -~
(i.e



3

points in the domain under consideration.

There are several methods for solving numerically the Navier-Stokes

equation in full or simplified form. All have their advantages; some

are economical yet less accurate while others are very accurate but

require large amounts of computer time. A description of some of the

more prominent methods for solving the three-dimensional Navier-Stokes

equation follows.

1.2 Review of Related Studies

The number of different algorithms designed to predict viscous flows

is vast. However, only methods developed to solve the three-dimensional

Navier-Stokes equation are of interest here. The types of methods can

be catagorized as time-marching methods, space-marching methods,

* parabolic-marching methods and fully elliptic methods. Time-marching

methods are so called because the governing equations are integrated in

the time coordinate. Likewise, space-marching methods use a streamwise

integration procedure. Parabolic-marching methods are essentially

multiple pass versions of space-marching methods whereby the domain is

computed several times to relax residual errors. Finally, elliptic

methods are relaxation techniques or inversion techniques which solve

the entire matrix generated by the discretized equations.

1.2.1 Time-Marching Methods

The unsteady form of the incompressible Navier-Stokes equation seems

well suited to a time integration procedure except that there is no time

dependent term in the continuity equation. If the compressible form is

used, the time-integration can proceed. Pulliam and Steger (1980) used
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the implicit approximate factorization scheme of Beam and Warming (1978)

to solve the compressible equation in three dimensions. Even though theU
important viscous terms were retained, the method required fourth order

implicit and explicit artificial dissipation for convergence to be

achieved. The method was used to compute various high Reynolds number

supersonic and transonic flows. Computed pressure distributions

compared favorably with the experimental data. If one were to use the

above method to solve very low Mach number flows, difficulties would be

encountered. At Mach numbers below 0.3 the energy equation tends to

become weakly coupled to the momentum equations. This introduces large

numerical errors and convergence of the system is not ensured. Briley,

Buggeln, and McDonald (1985) replaced the energy equation with a

constant enthalpy equation. An adiabatic equation of state was used to

eliminate the pressure as a dependent variable. The resulting system is

suitable for solving low Mach number flows. The Beam and Warming (1978)

algorithm was used to solve the coupled system for a laminar horseshoe

vortex generated by a wing-body juction. The inlet flow Mach number wasU

0.1. Only small amounts of artificial dissipation were required to

achieve convergence. Also used to predict three-dimensional

compressible flows is the MacCormick implicit method (1982) which is

based on the author's explicit predictor-corrector method. It only

requires the solution of bidiagonal matrices and so is very efficient.

Recently, Dawes (1986) used a time-marching method to solve the flow in

a compressor rotor. A finite volume formulation was used to discretize

the governing equations. Computed Mach number contours compared well

with the available experimental data.

The above methods use the compressible formulation which assumes a
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perfect gas is being considered. If the fluid is water, a truly

incompressible form of the equations must be used. Since no pressure

term is present in the continuity equation, solution of the

incompressible formulation is very difficult and the governing equations

must be manipulated to yield a more tractible form. Following the ideas

of Chorin (1967), Kwak et al. (1984) introduced a time derivative of the

pressure into the continuity equation. For a steady flow, a time

integration of the system yields a divergence free velocity field. The

coupled system was solved using the Beam and Warming algorithm for

several three-dimensional viscous flow problems including the flow in

the space shuttle main engine power head. Both implicit and explicit

fourth order artificial dissipation were necessary to achieve

convergence which was seldom greater than two orders of magnitude.

* In addition to the above implicit methods, explicit methods have

been used to compute the three-dimensional viscous flow. Explicit

schemes are generally limited to very small time steps due to the CFL

condition and with this comes large computation times. However, withn

the advent of supercomputers, explicit methods are again finding favor

among researchers. Shang et al. (1980) used MacCormack's explicit

predictor-corrector scheme to study the shock/boundary layer interaction

in a wind tunnel diffuser. The explicit scheme allowed for a high

degree of vectorization and extremely fast computation times were

reported. Results compared reasonably well with the experimental data.

Chima (1986) used a vectorized two-step Runge-Kutta scheme to solve

quasi-three-dimensional flows. A multigrid algorithm was used to

efficiently compute the flow in a centrifugal impeller. Computed

pressure distributions compared well with the experimental data.



6

Artificial dissipation was required to ensure convergence. Convergence

to five orders of magnitude was enhanced by a factor of three when using

the multigrid scheme over a single grid.

1.2.2 Space-Marching Methods

For some flows, solving the full elliptic form of the Navier-Stokes

equation is not necessary. If a main flow direction can be identified,

the governing equation can be "parabolized" and integrated in the time-

like streamwise direction. The Navier-Stokes equation is parabolized by

neglecting the streamwise diffusion of momentum and manipulating the

streamwise flux vector such that the product of the inverse of its

Jacobian and the Jacobian of the transverse flux vector has real

eigenvalues. In supersonic flow, the eigenvalues are all real and

i positive if the streamwise velocity is non-negative. In the boundary

layer, one eigenvalue becomes imaginary and the system becomes unstable

for space-marching. In the boundary layer, retaining the streamwise

pressure gradient in the implicit part of the streamwise flux vector

yields an unstable system as the grid system is refined. Such departure

solutions are well documented. Keeping the streamwise pressure gradient

term explicit removes this instability but cannot account for any global

interaction between the viscous and inviscid flows. Shiff and Steger

(1979), following boundary layer theory, replaced the pressure in the

viscous layer with the pressure in the outer supersonic flow. Vigneron,

Rakich and Tannehill (1978) used a similar marching procedure, namely

Beam and Warming (1978) scheme, yet split the streamwise pressure

gradient into implicit and explicit parts. A weighted average was used

based on the flow Mach number. Such a formulation can capture mild
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pressure interaction between the inner and outer layers.

Govindan and Lakshminarayana (1987) later modified Shiff and

Steger's (1979)-method for internal subsonic flows. A special bulk

pressure correction was required to conserve global mass flow. The

method proved to be very sensitive to the value of the explicit assumed

pressure gradient and had difficulty in low Mach number flows.

Along very different lines, Briley and McDonald (1979) based a new

space-marching method on secondary flow theory. They split the velocity

into four distinct parts namely, a known potential velocity, a potential

secondary velocity, a solenoidal secondary velocity, and a viscous

streanwise velocity correction. The governing equations were recast to

give equations for each new component of the velocity. Elliptic effects

were transmitted through the potential flow which was required a priori.

The need for the potential flow a priori is a major drawback for the

method although it has been used with good success on various curved

duct geometries. Along similar lines, Dodge (1976) split the velocity

into potential and rotational parts. The potential component was usedm

to correct the pressure so that continuity was satisfied.

Patankar and Spalding (1972) developed the precusor to contemporary

parabolic-marching methods. Their space-marching method for internal

flows could solve with equal success the compressible or incompressible

Navier-Stokes equation. The method used in the cross-plane was

essentially the SIMPLE procedure which consisted of decoupling the

continuity and momentum equations and solving for the velocity

components on a staggered grid in the cross-plane. The streamwise

momentum equation was solved for the streamwise velocity using an

assumed streamwise pressure gradient. The transverse momentum equations
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were solved in turn. A bulk passage averaged pressure correction was

also included so that the global mass flow constraint was satisfied. A

two-dimensional pressure correction was also included in order to

correct the velocities to satisfy the continuity equation. This was

accomplished by relating the gradients of the pressure correction to the

velocity corrections. In this way, a two-dimensional Poisson equation

for the pressure correction could be written in place of the continuity

equation. Once converged at a particular streamwise station, the

pressure correction tended to zero and thus the velocity corrections

tended to zero giving a divergence free velocity field. The process was

iterated to convergence at each streamwise station before the procedure

was advanced to the next station. The marching scheme could be used

only for parabolic flows yet was a major breakthrough.

* Briley (1974) and later Ghia and Sokhey (1977) used the same

pressure split scheme and similar approaches to solve the incompressible

equations on a regular grid. Ghia and Sokhey (1977) introduced an extra

inviscid mean pressure which was a function of the streamwise direction

only. The inviscid mean pressure was assumed known and its presence

allowed for the computation of mildly elliptic flows. Conservation of

global mass flow was used to determine the viscous mean pressure and the

cross-plane pressure was computed from a Poisson equation which was

generated by taking the divergence of the transverse momentum equations.

Most importantly, the system did not in general satisfy continuity.

Thus, irrotational velocity corrections were introduced to satisfy

continuity. Being irrotational, a potential function could be written

for the velocity corrections and when substituted into the continuity

equation, yielded a second Poisson equation to be solved in the cross-
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plane. Thus, at a particular streamwise station, the streamwise

momentum equations were solved for their respective velocities and the

pressure was corrected to satisfy global mass flow through iterations.

The cross-plane pressure was computed from the Poisson equation and the

velocities were corrected to satisfy continuity by solving the second

Poisson equation. The process was repeated until convergence was

achieved and the procedure was advanced to the next streamwise station.

With so many Poisson equations, the method proved to be cumbersome and

thus not widely used.

To remove the need for Poisson equations, Pouagare and

Lakshminarayana (1986) kept the pressure gradients implicit and solved

the entire incompressible formulation in a coupled fashion using the LBI

scheme of Briley and McDonald (1980). Thus, local continuity and the

n global mass flow constraint were satisfied without the need for solving

extra equations. An eigenvalue analysis showed that the system could be

space-marched if the coefficient of the streamwise pressure gradient was

less than zero. This result could be inferred from the work of

Vigneron, Rakich and Tannehill (1978) for a Mach number of zero. Thus,

the streamwise pressure gradient was split into implicit and explicit

parts with the implicit part multiplied by a small egative coefficient.

For small values of the coefficient, the method was relatively

insensitive to the explicit assumed pressure gradient when applied to

parabolic flows. This is not suprising since the streamwise pressure

gradient is closely tied to the conservation of global mass flow. The

implicit pressure gradient corrected the explicit part in order to

conserve global mass. The method was very fast and extremely accurate

for straight and curved ducts; however, several problems were
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encountered when the method was used in a multi-pass mode. These

problems will be discused extensively in Chapter II.

Recently, due to the speed of supercomputers, explicit methods have

been used to solve the parabolized Wavier-Stokes equation. Spradley and

Stalnaker (1981) developed an interesting procedure which used the time-

dependent, parabolized Navier-Stokes equation. The authors termed this

a Quasi-Parabolic system and used their General Interpolants Method

(GIM) to discretize the equation. At a particular streamwise station,

using the solution at the previous station as initial conditions, the

equation was iterated to convergence using MacCormack's predictor-

corrector scheme in the cross-plane. At convergence, the solution

procedure was advanced to the next streamwise station until the entire

domain was computed. Gielda and McRae (1986) solved the steady,

parabolized Navier-Stokes equation using MacCormack's two step

predictor-corrector scheme, marching in the streamwise direction. Small

marching steps were required due to CFL conditions yet no minimum step

size requirement, common to implicit schemes, had been encountei-d. Due

to its high degree of vectorization, the method proved to be

computationally efficient even with the fine mesh used. It should be

noted that the fine grid resulted in increased accuarcy for hypersonic

flow over ogive cylinders at an angle of attack. Also, less numerical

damping was required compared to implicit methods.

1.2.3 Parabolic-Marching Methods

Pratap and Spalding (1976) extended Patankar and Spalding's (1972)

scheme to allow for a multi-pass solution procedure. The domain was

computed several times using the previously computed pressure field as a
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new assumed pressure. The procedure was repeated until the pressure

corrections dropped to zero. In this way, more strongly elliptic flows

could be computed since downstream pressure effects could be transmitted

upstream.

Moore and Moore (1979) used a very similar procedure to compute the

viscous compressible flow in ducts. A finite volume method was used

with the pressure corrections located at the center of the control

volumes. The equations were integrated in the streamwise direction and

a one-dimensional pressure correction was used to conserve global mass

flow. A three-dimensional pressure correction equation was written

based on force residuals found in the momentum equations. This pressure

correction equation was solved after each integration of the momentum

equations until the force residuals dropped to zero. Moore and Moore

*] (1981) later improved the method by using only one three-dimensional

pressure correction. The gradients of these corrections were

manipulated in such a way that large changes in the transverse gradients

did not yield large changes in the streamwise gradient. This method

could be used on non-orthogonal grids whereas the earlier method had

great difficulty with such grids. The three-dimensional pressure

correction equation based on force residuals was retained and the method

was used to compute the flow in a ghost impeller. The computed static

pressure compared well with the experimental data, however, the computed

velocity field did not compare well.

Rhie (1983) extended Pratap and Spalding's (1976) multiple pass

marching scheme to generalized coordinates. The method employed a

finite volume integration and pressure corrections to conserve local and

global mass. Averaging was used on control volume boundaries to give a
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finite difference expression much like the SIMPLE scheme. Numerical

diffusion was introduced to avoid instabilities associated with central

differencing of the convective terms. The computational procedure is

very similar to Pratap and Spalding's procedure except that once a

forward-marching pass was completed, a three-dimensional elliptic

pressure correction equation was solved to accelerate the propagation of

downstream pressure corrections upstream. The method was used to

compute the viscous flow in curved ducts and diffusers and in impellers

by Rhie, Delaney, and McKain (1984). In all cases, the results compared

favorably with the experimental data. Khalil and Weber (1984) used a

procedure very similar to Rhie's accept that special attention was paid

to the satisfaction of a compatibility relation when solving the

pressure correction equation. The compatibility relation is based on

Green's divergence theorem and must be satisfied exactly if a converged

solution is to be obtained for any Poisson equation. The method was

used on various curved duct flows with very good results.

1.2.4 Elliptic Methods

Elliptic methods solve the Navier-Stokes equations with no

parabolizing assumptions made. Usually, a finite volume form of the

uncoupled equations is employed which is relaxed until the residuals

drop to some small level. Hah (1984) solved the uncoupled equations on

a a staggered grid. The staggered grid is generally difficult to use on a

curvilinear coordinate system, however, Hah overcomes these dificulties

by using a quadratic upstream interpolation scheme and a skew upwinding

scheme. A complex algebraic Reynolds stress model was used to model the

effects of the turbulence. This method was used to compute the viscous
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flow in a turbine end-wall cascade and recently in a compressor rotor

with tip clearance (Hah (1986)). Results compared extremely well to the

experimental data for all test cases. Velocity profiles and flow angles

compared almost exactly to the experimental data in the tip clearance

region even with as few as five grid points in the clearance region.

Moore and Moore (1985) used nearly the same procedure as Hah but

incorporated an algebraic eddy viscoslcy model for the turbulence. The

predicted pressure losses were in better agreement with the experimental

data than Hah'9 prediction for a turbine end-wall cascade.

Vanka (1985) solved the governing equations in a coupled fashion

r- using a direct solver. Such a solver requires large amounts of computer

storage but can be very efficient. The method was used on a strongly

curved duct with very good results.

*Recently, Rhie (1986) developed a full elliptic solver which employs

the Pressure Implicit Split Operator (PISO) concept. Several levels of

pressure corrections are used to correct for mass flow imbalances and

the method can be used for all Mach numbers were the flow remains a

continuum. The density is treated implicitly in the pressure correction

procedure. A predictor-corrector type algorithm was employed and a

multigrid procedure was included to enhance convergence. The method was

tested on a wide range of flows including a three-dimensional driven

cavity and a turbine end-wall cascade. Results agree very well with the

experimental data.

1.3 Objectives and Method of Approach

The major objective of this work is to develop a new parabolic-

marching method to solve the three-dimensional incompressible Navier-

:1
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Stokes equation. The method must be stable, convergent, and accurate

for the computation of a wide range of turbomachinery flows. The new

method will be used to compute blade and end wall boundary layers and

three-dimensional wakes in rotating and stationary blade rows. A

secondary objective is to discuss drawbacks of a few earlier methods and

to include high order turbulence models. Also, some of the

idiosyncracies of forward-marching the Navier-Stokes equation will be

discussed.

In order to develop a new method, the difficulties associated with

existing techniques must be discussed. A technique recently developed

to overcome these difficulties will be analyzed using Fourier stability

theory to determine its global stability characteristics as a multiple

pass method. Next a simple modification to the technique will be

analyzed to see if convergence can be ensured with a multiple pass

scheme. Also, an eigenvalue analysis will be performed to determine if

the modified method is stable during the forward-marching integration

process. Finally a new parabolic-marching method will be developed
U

which is convergent when multiple passes are made and which overcomes

some of the difficulties with the afore mentioned methods. An

eigenvalue analysis will be performed to ensure stability during the

forward-marching process and a Fourier analysis will be performed to

ensure global stability during the iteration process for a wide range of

flow conditions. Anew solution procedure will also be explored which

improves predictions for coarse grids. The new method employing the new

solution procedure will be calibrated by computing the developing flow

in a straight duct with square cross-section. Proper transmission of

pressure ellipticity will be tested by computing the laminar flow in an
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S-shaped duct. Finally, to complete the validation, various turbulent

* turbomachinery flows will be computed and the results compared to the

available experimental data.

r

U

n
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CHAPTER 2

U

ANALYSIS AND MODIFICATION OF EXISTING TECHNIQUES

2.1 Introduction

The equation which governs fluid flow is the Navier-Stokes equation.

The components of this vector equation are the continuity equation and

the three momentum equations. If the flow is compressible, an energy

equation is added to the set. Only incompressible internal flow is

considered here. Thus, the Navier-Stokes equation is written in non-

dimensional form as:

a xA + 8yB + azC - 1/Re (8xxD + + azzD) = S

(2.1)

u V w

u2+p vu wu
*A= B= C=

uv v2+p wv

uw vw w2+p.

0 0

u 0
D = vS = 0 y 2 l

j 2z-21v

where Re is the Reynolds number and all velocities are normalized by

some bulk inlet velocity and the pressure by the dynamic head.

Equation 2.1 is written for geometries which rotate about the x axis

with non-dimensional rotation A. The equation is second order elliptic
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due to the diffusion terms. If a main flow direction can be identified,

as with most turbomachinery flows, the streamwise diffusion of momentum

can be neglected. For the sake of example, x is assumed to be the

streamwibe direction and so neglect the diffusion in x which gives

equation 2.2.

3xA + 3yB + azC - 1/Re (yyD + 3zzD) = S

(2.2)

This reduces the order of ellipticity and the resulting system is

termed 'partially parabolic'. With such a system, efficient spacially

marching solution procedures may be used. However, the streamwise

pressure gradient term introduces first order ellipticity and thus

requires special treatment.

* 2.2 Difficulties With Existing Techniques

The forward-marching procedures available, whether single pass

space-marching or multiple pass parabolic-marching methods, have various

drawbacks associated with them. The following methods either remove the

pressure completely from the formulation or split the pressure into a

two-dimensional transverse pressure and a one-dimensional bulk

streamwise pressure. These modifications are useful in overcoming the

traditional difficulties associated with unmodified pressure terms.

Briley and McDonald's (1979) method removes the pressure from the

formulation and requires the specification of the potential flow for the

geometry and flow conditions under consideration. For simple straight

and constant curvature ducts, the potential flow is almost trivial.

However, for complex flows, a full potential solver must be used
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initially to establish the potential field. This may require a large

expenditure of computation time in addition to the viscous flow solver.

Also, the viscous pressure field is not a computed quantity and so

viscous pressure losses cannot be computed. Patankar and Spalding's

(1972) method solves the parabolized Navier-Stokes equation on a

staggared grid in an uncoupled fashion using a pressure split scheme.

The staggared grid is difficult to implement in complex geometries using

generalized coordinates. Rhie (1983) later recast the equations for a

non-staggared grid but like Patankar and Spalding, must solve a Poisson

equation in the transverse plane for the pressure corrections in order

to indirectly satisfy continuity. Due to the large amount of computer

time required to reach a converged solution, a Poisson equation should

be avoided in the formulation. For this reason, Briley's (1974) and

I Ghia and Sokhey's (1977) methods are not recommended, in fact both

methods use two Poisson equations in the cross plane, one for the

pressure and another for irrotational velocity corrections which

indirectly satisfy the continuity equation. That is, the continuity

equation in the above methods is satisfied only through an iterative

process and not satisfied directly. Pouagare and Lakshminarayana (1986)

sought to remove these Poisson equations from the formulation. To do

so, the flux vectors in the governing equation must be manipulated to

achieve a stable forward-marching procedure.

In the following, several modifications to equation 2.2 are

described which manipulate the pressure terms to allow for stable

forward-marching. The global stability of multiple passes of the flow

field using these modifications is investigated and drawbacks are

described. For the sake of example, the two-dimensional form of
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equation 2.2 is used to simplify the analysis, however, the extension to

three dimensions is straightforward albeit laborious.

2.3 Method of Pouagare and Lakshminarayana (PL)

In an attempt to develop an efficient single pass space-marching

method to solve the partially parabolized Navier-Stokes equation,

Pouagare and Lakshminarayana (1986) modified the streamwise pressure

gradient term. The modification was motivated by the following

eigenvalue analysis performed by them. It is the intent of this author

to show, through a Fourier stability analysis in section 2.3.2, that

this method is globally unstable when multiple passes of the flow field

are made.

2.3.1 Eigenvalue Analysis
I

For simplicity, the following analysis is performed for a two-

dimensional system. The results are applicable to three dimensions as

well. First, the streamwise pressure gradient in the flux vector A is

tagged with the coefficient a giving:

u ]

A= u2+Gp

uv (2.3)

The two-dimensional form of equation 2.2 is then linearized and written

in frozen coefficient form as:

Aj 8xq + Bj ayq - Dj ayy q S

(2.4)
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where Aj, Bj, and Dj are the Jacobians of the vectors A, B, and D,

respectively and q is the dependent vector (p, u, v, w)T.

S 01 [0 0
Aj= C 2u 0 Bj= 0 v u

L[cv uB [ 1 0 2v"

0 0 0

Dj= 0 l/Re 0

0 0 I/Re (2.4a)

The terms on the left-hand side of equation 2.4 and all other equations

are treated implicitly in the computation while terms on the right are

treated explicitly. For stable forward-marching, the eigenvalues of the

matrix Aj-Dj must be real and non-negative for proper damping. Also,

the eigenvalues of the matrix Aj-IBj must be real. For the modified

1 flux vector A in equation 2.3, the characteristic equation of Aj-Dj is:

X2(X - 1/u ) : 0

(2.5)

The solution of equation 2.5 gives the following eigenvalues:

X1, 2 = 0 X3 = 1/u

(2.6)

Therefore, if the streamwise velocity is positive, the scheme is

naturally dissipative and the first condition for stable forward-

marching is satisfied. For Aj-IBj, the characteristic equation is:
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X3 (v/u)X2 + (1/)X - v/(Gu) 0

(2.7)

thus, the eigenvalues are:

X1 = v/u , X2 ,3 = ±I/1G

(2.8)

where I : /7'. Therefore, if a is less than zero, the eigenvalues are

all real. In such a case, forward-marching is stable.

Pouagare and Lakshinarayana set a to some small negative value

(-0.01). With this, the authors modified the source vector S for

consistency in the following manner (with no rotation):

* 0

S = axpas + oaxP

0 (2.9)

m where axpas is an assumed pressure gradient and is forward differenced

for proper transmission of elliptic effects and oaxP is differenced in

the same manner as the implicit part namely:

iaP = o(pi - pi 1)/Ax

(2.10)

where i is the streamwise index at which the solution is desired. Since

S is a source term, Pi is not yet known and so must be replaced by pasi .

Thus, equation 2.10 becomes:
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Oaxp = (pasi - Pj-1)/Ax

(2.11)

The final system is inconsistent unless pas p. The equation was

discretized and solved using the LBI scheme of Briley and McDonald

(1980). Pouagare and Lakshminarayana used a very small a, i.e., -0.01.

This relaxes the streamwise pressure gradient condition so that the

global mass flow constraint, through the satisfaction of the continuity

equation coupled to the momentum equations, can be satisfied directly.

2.3.2 Global Stability Analysis

With the modifications described in section 2.3.1, the system of

equations can be space-marched. It is apparent that if the assumed

pressure field is not correct, the computed pressure field will adjust

so that the governing equations will be satisfied. One must now ask

whether multiple passes of the domain will relax the residual errors due

to an incorrect assumed pressure such that p - pas. The following

- global stability analysis will answer this question.

To perform the analysis, equation 2.2 must be discretized in the way

in which it is to be solved. Two point backward differences are used

for streamwise derivatives while three point central differences are

used for transverse derivatives giving:

Aj (qi,j-qi1,j)n/Ax + Bj (qi,j+1- qi,j-1)n/2Ay

- Dj (qi,j+l-2qi,jqi,j_l)n/(Ay)2 = Sj qnl i,j

(2.12)

where n is the global iteration index (pass number) and j is the

transverse index.
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The multiple pass stability or global stability of the method can be

checked using a von Neumann stability analysis. The underlying premise

of this analysis according to Smith (1978) is that the error function at

any point in the domain satisfies the partial differential equation

under consideration. Thus, it is assumed that any error eni,j satisfies

equation 2.12. The error is also separable into a function of space and

a function of iteration level. With this, the error can be decomposed

in a Fourier series. The necessary and sufficient condition for the

global stability of a two level system is that the error due to the

iteration level must not increase with increasing iterations.

Therefore, the following relation is introduced substituting the error

function for the dependent vector q in equation 2.12.

qni,j - eni,j = An exp I( i8x + jiy )

*(2.13)

where An is a Fourier coefficient and I is the imaginary unit. Then,

equation 2.12 becomes:

Pj An = Hj An-
1

(2.14)

where

0 1I 12

Pj 0( 1 1+1 4 ) 2uI1+vI2-X 3  u 2

a2 vnd u£1+2vL2-13

and
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U ~~with H: [+~

%j co O + Iin Ox

12=(Ax/Ay) I sine

Z3=2Ax (cos 6y - 1)/[Re (Ay)21

14=csO - I sin Ox

15=cosOS + I sin O

(2.15)

The amplification matrix G is now defined as:

G=jHj= M2 0

(2.16)

where

such that
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An : G An-
1

(2.17)

In order to achieve a convergent system, the absolute value of the

eigenvalues of G must be less than or equal to unity. The eigenvalues

of G were found to be:

X1= (a+1-£L5){v9£12-£1(u9£1+2v£2-£3)}/IPJI

(2.18)

X2 ,3 = 0

(2.19)

One can check the maximum value of the eigenvalues by setting ex=ey:T.

This gives:

SI kXlmaxI =1 1 + 2/c I

(2.20)

which for a=-0.01 (as used by Pouagare and Lakshminarayana (1986)) is

199. Note that equation 2.20 is not a function of the velocity ratio

nor the grid aspect ratio; thus, the PL method is unconditionally

unstable when used in a global marching procedure. However, it is

apparent that the scheme is globally stable when a is set to -1. A

close inspection of the PL equations reveals that this gives a simple

forward difference for the streamwise pressure gradient which is

essentially the same as the Rubin and Reddy (1983) scheme on a regular

grid.

For completeness, the global stability for all wave numbers must be

investigated. Recall that if the absolute value of X must be less than
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or equal to unity for global stability, then the absolute value of X* X

must also be less than or equal to unity where X* denotes the complex

conjugate of X. With u and v set to one, Ax = Ay and Re arbitrarily

set to 1000, the global stability for all wave numbers for o=-0.01 and

-1.0 can be reviewed in Figures 2.1 and 2.2, respectively. The hatched

area indicates the region where the scheme is unstable. One can see

that for high wave numbers, the original PL method with o=-0.O1 is

unstable but with o=-1.0, the scheme is stable everywhere. When the

velocity ratio is changed, there is no change in the stability

characteristics. There is, however, a large change when the grid aspect

ratio is changed. The effect of the ratio of Ax/Ay on the stability

can be seen in Figures 2.3 and 2.4 for a=-0.01. When the aspect ration

of the grid is changed to Ax/Ay=0.01 from unity, the system of

u equations becomes ustable for a wider range of wave numbers but the

level of the eigenvalues remains essentially unchanged. The stable

region is confined to wave numbers of ey/T < 0.04. This is consistent

with the well known stability limitation on a minimum Ax when solving

incompressible flow with a space-marching method. As Ax is decreased,

the instability becomes greater. Likewise, when Ax is increased,

stability is enhanced since the zone of ellipticity is overstepped.

This can be seen for Ax/Ay:100. For this aspect ratio, there appears

to be a wider range of wave numbers where the global iteration procedure

is stable. The region of stability is confined to values of x/?w

between 0.1 and 0.9. At exOey:w, the eigenvalue still reaches its

maximum of 199. If the absolute value of the eigenvalue is greater than

unity for any wave number then stability cannot be assured. Variation

of the Reynolds number from 10 to 106 produces no change in the global
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stability characteristics. Thus, it is apparent that only when a=-1.0

is the PL scheme stable for multiple passes of the flow field.

Unfortunately, the small value of a is the most attractive feature of

the PL method since this allows for very good viscous flow predictions

when the inviscid pressure is given as the assumed pressure -(see

Pouagare and Lakshminarayana (1986)). With a=-1.0, viscous predictions

of complex flows become difficult since the streamwise pressure gradient

condition is nolonger relaxed and the coupling of the continuity

equation to the momentum equations stiffens the solution process.

2.3.3 Remarks on the Method

The PL method was found to be relatively insensitive to the assumed

pressure distribution for strongly parabolic flows, e.g., developing

flow in a constant curvature duct with constant cross-sectional area.

This is no surprise since the satisfaction of the global mass flow

constraint should set the proper streamwise pressure gradient for an

internal flow. For parabolic flows, the transverse pressure gradients

are essentially constant or change only slightly in the streamwise

direction. Thus, their effect can be introduced as some source term in

the transverse momentum equations leaving the pressure as a dependent

variable in only one equation, the streamwise momentum equation. With

continuity satisfied exactly, the proper velocity field is always

computed regardless of how the streamwise pressure gradient is treated.

The pressure is always adjusted during the computation in response to

the assumed pressure. Combining the assumed and computed pressure

through a simple functional relationship yields an integral equation for

the actual pressure as was done by Pouagare and Lakshminarayana (1986).
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When the transverse pressure gradients vary with the streamwise

direction, as in cascades, the actual pressure cannot be obtained from a

simple relationship. When using the PL method for complex flows, while

good viscous velocities are obtained, the viscous pressure cannot be

determined easily. One alternative is to use the Poisson equation for

the pressure which uses only the viscous velocity field to compute a new

viscous pressure field (see Kirtley and Lakshminarayana (1985)). The

question of whether the Poisson equation can be coupled to the PL method

to yield a convergent system is defered to section 2.5.

The method is very useful for obtaining the viscous velocity field

in a complex geometry if a fairly accurate presciption of the inviscid

pressure field is used as the assumed pressure. It should also be noted

that, due to the small value of a, the uncoupling of the odd and even

points in the computation is severe.

It is useful to comment that the computation of complex flows is

successful with the PL method because one condition, namely the

streamwise pressure gradient condition, is relaxed during the

computation. It should also be noted that most methods described in

chapter I also relax some oondition, usually the continuity condition.

Regarding the stability of the multiple pass mode, a look at a one-

dimensional system as suggested by Abdallah (1987a) leads to the same

conclusion as the von Neumann analysis. The one-dimensional system is:

axu : 0

3xu2 + Caxp -axp as + a1xp

(2.21)

where the second term on the right side of the momentum equation is
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differenced as in equation 2.11. Inversion of the system shows that:

Sui = ui I

Pi = 1/o (axpas) + pas,

(2.22)

Thus, regardless of the value of pas, the correct velocity is always

computed. On the otherhand, the difference between the computed and

assumed pressure is equal to the assumed pressure gradient divided by

a. Thus, any error in the assumed pressure gradient will be multiplied

by a very large number since a is very small. If a was large, the

system would be stable but physically unrealistic. Thus, the same

conclusion of unconditional instability of the PL method can be made.

One wonders whether a similar modification to the pressure gradients

could be made in such a way as to give results as good as the PL scheme

in single pass mode yet be stable in multiple pass mode.

2.4 Modified PL Method (MPL)

In an attempt to overcome some of the drawbacks of the PL technique,

a modified PL method is developed in this section based on the pressure

corrections of Moore and Moore (1981). The pressure is split into an

assumed pressure and a pressure correction.

p = pas + PC

(2.23)

The gradients of p are split as follows:

axp = axpas + axpc

yp a aypaS + b yPC
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azP = azPas + bazpc

(2.24)U
Where as Moore and Moore solve an uncoupled set of equations, the

present MPL method solves a coupled system of equations. Thus, in two

dimensions, vectors A, B, and S in equation 2.4 become:

A= u2+pc  B= uv S= -axpas

uv -v2+bp c _ ayp a s  =

(2.25)

So that as pC .0, the exact equation is solved within the accuracy of

the discretization. It is hoped that if the absolute value of b is

large then the global instability characteristic of the PL method may

not arise and global convergence of the MPL method may be achieved.

Moore and Moore use the notation l/e which is equivalent to b and use a

value of e equal to -0.01.

N 2.4.1 Eigenvalue Analysis

The stability of the forward-marching procedure of the MPL method

can be studied in a manner similar to that in section 2.3.1. The

Jacobians of the modified vectors A and B are:

Aj 1 2u 0 Bj= 0 v u

0v u b 0 2v

Again, for stable forward-marching, the eigenvalues of the matrix Aj'IDj

must be real and non-negative for proper damping and the eigenvalues of
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the matrix Aj'IBj must also be real. For the flux vector A in 2.25, the

characteristic equation of Aj-IDj is:

X2 (X - 1/u ) 0

(2.26)

thus, the eigenvalues are:

X1,2 = ' X3  1/u

(2.27)

Therefore, if the streamwise velocity is positive, the scheme is

r naturally dissipative. For Aj-IBj, the characteristic equation is:

X3 - (v/u)X 2 + bX - vb/u = 0

(2.28)

I
Solving equation 2.28 gives the following eigenvalues:

X1 = v/u , X2 ,3

m (2.29)

Therefore, if b is less than zero, the scheme is stable for forward-

marching. One should also notice that the eigenvalues in 2.29 are the

same as those of the PL method in equation 2.8 if b is equal to I/a.

Therefore, the MPL method should give very similar results to those of

the PL method if b is set to -100. So now there is a large coefficient

multiplying the implicit pressure correction gradient. As seen from the

analysis for the PL method, global convergence is expected with the MPL

method with the absolute value of b large.
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2.4.2 Global Stability Analysis

m The question now arises whether the MPL scheme can be used in a

multiple pass mode to reduce residual errors. Using the procedure

outlined in section 2.3.2 with the Fourier decomposition in equation

2.13 gives:

Pj An . Hj An- 1

(2.14)

where

0 9, 12
P [ b1 2uZ1+vZ2 -i3 u92

Lb1 2  v1 I  u 1+2v9.2-9,3 -

* and

0 01
Hj 0 0 0

m 2(b-1) 0 0J

This gives the following amplification matrix G:

MI  0 0

G = M2  0 0

M3  0 0

(2.30)

where

Ml=(b-1)1 2(ult2-L2(2utl+Vt2 -t3))/ Pj

M2:(b-l1)l 1t2
2/IPjI
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M3 =( 1-b) 2 t 12 /I PJ I
SPJ =-t1 ( Z1(u1j+2v £2-%3)-ubZ2 2 ) )

£2(vl 1
2 -bZ2 (2u1 1+vt2 -Z3 ))

and Z1,2,3,4 are defined as before in equation 2.15.

The eigenvalues of G are then:

X1 = M1

X2 ,3 :

(2.31)

Previously, the maximum value of X1 was found for ex:ey I. For this

combination of wave numbers, X1:O which would indicate that the system

is stable for multiple passes. This is not the case as a plot of the

absolute value of X*XI in Figure 2.5 will attest. Again the hatched

area indicates regions of instability. For a value of b=-100, u=v=1 and

Re:1000, the values of the eigenvalues are much less than those of the

PL technique. In fact, the eigenvalues are only slightly higher than

unity and are less than unity for most wave numbers. However, by

definition, the system is not stable if IX*XlI > 1 for any wave number.

As with the PL method, the stability characteristics remain unchanged

when the velocity ratio is changed. However, when the grid aspect ratio

is changed from Ax/Ay=1 to 0.01, it seems apparent from Figure 2.6 that

the scheme is globally stable. Unfortunately, there is a small unstable

region confined to the area where ey/r = 0 at which location the

maximum eigenvalue equals 1.01 for this combination of parameters.

Again, this indicate5 that global stability is not ensured. As with the

PL method, when the ratio of Ax/Ay=100 (see Figure 2.7), the region
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where the global marching procedure is stable is greater, i.e., for 0.1

< ex/ < 0.9. Still, the maximum eigenvalue is 1.01 at 0x=w and 8y=O.

Therefore, the MPL method is unstable for a multiple pass procedure. It

is interesting to note that, for the same combination of parameters, the

MPL method is stable for the combination of wave numbers where the PL

method is unstable and vice versa. A possible explanation for this is

that the streamwise momentum equation is manipulated in the PL method

whereas the transverse momentum equations are manipulated for the MPL

method.

The above analysis is not exact since the actual equation is not

solved in frozen coefficient form and the treatment of the boundary

conditions has not been included in the analysis. This leads one to

believe that the system may be stable after all. Therefore, it seems

* worthwile to persue this technique.

2.4.3 Remarks on the Method

The MPL method appears to be very promising. The forward-marching

eigenvalue analysis indicates that the single pass results may be as

good as those of the PL technique. Indeed, it can be used efficiently

as a single pass method as can the PL method. Unfortunately, the method

is not stable for multiple passes of the domain even though the pressure

gradient is multiplied by a large coefficent which seemed to be

appropriate for global convergence as mentioned in section 2.3.3. A

computation of the developing flow in a straight duct with a square

cross-section shows a slow divergence when multiple passes are made.

Figure 2.8 gives the convergence history for this test case. Due to the

large value of b, the same uncoupling of odd and even points is present
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as with the PL scheme. This also leads to great difficulty in computing

[] spacially periodic flows. The scheme has been used for a zonal equation

method developed by Warfield and Lakshminarayana (1987). In their

scheme, the MPL method is used in parabolic regions of the flow and a

time-marching method is used in the elliptic regions and to correct the

pressure field in the entire domain. With another equation determining

the new pressure field, the MPL method in essentially a multiple pass

mode and is shown to be convergent. The question then arises whether

both the PL and MPL techniques could be used in a multiple pass mode and

be stable if a separate equation for the pressure is used to determine a

new pressure field between passes of the domain. The obvious choice for

the separate equation is the Poisson equation for the pressure.

2.5 Poisson Equation for the Pressure

The Poisson equation for the pressure is obtained by taking the

divergence of the momentum equation. For the three-dimensional system,

the equation looks like:

v 2p = Zp

(2.32)

Ep = -(2( xvayu+axwazu+aywazv)+(axu)2+(ayv) 2+(azw) 2 )

(2.33)

There is no analytical solution to equation 2.32 since the source

term Ep is not separable. Equation 2.32 can be inverted directly for

p, however, this requires immense amounts of computer storage for three-

dimensional computations. Relaxation techniques are the most efficient

way to solve 2.32 but a convergent solution requires the satisfaction of
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a compatibility relation which arises from Green's divergence theorem,

namely:

f f dV f anpdS
V S

(2.34)

where V is the volume of the domain, S is the area enclosing the domain

and 3n is the derivative normal to S.

Equation 2.32 was coded, solved using a semi-implicit method, and

coupled to the MPL technique. In order to test the convergence of this

system, the turbulent flow in an S-shaped duct was computed. The

j geometry is given in Figure 2.9 along with the measurement locations.

The flow was measured by Taylor et al. (1982) at a flow Reynolds number

of 40000 based on the duct width. More details about this particular

flow are given in section 3.8.2.

With no assumed pressure field, the MPL method could not compute

past the second bend of the duct. Here, the computed flow separated and

the turbulence model introduced instabilities. Thus, the computation

was restarted using an assumed pressure field derived from a sine

function with the measured bulk pressure drop imposed. This assumed

pressure was both smooth and close to the experimental data. With this,

the MPL successfully computed the entire domain. The results are

presented in Figures 2.10 through 2.13.

The computed streamwise and transverse velocity profiles are

compared to the experimental data at station 2 in Figures 2.10 and 2.11,

respectively. Here, the streamwise boundary layer thickness is

reasonably well predicted but the secondary flow, while having the

proper sense, is not large enough. This may be due to inlet conditions
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with a lower than measured vorticity or a poor resolution of the

transverse pressure gradient. The streamwise and transverse velocities

are again compared to the experimental data at station 5 in Figures 2.12

and 2.13, respectively. Station 5 is perceived to be the location where

elliptic influences are the greatest. Near the side walls, the

predictions of the streamwise velocity are not good. The secondary flow

is well predicted at all transverse locations except at Y/D=0.9. At

this location, almost no secondary flow is computed which is not

consistent with the data. These below average predictions should not be

worrysome, however, since this is the first pass of what is hoped to be

a multiple pass procedure in which the solution converges to the correct

solution after several global iterations with the Poisson equation used

to update the pressure.

The viscous pressure was computed from equation 2.32 and is given in

Figure 2.14. Neumann boundary conditions based on the momentum

equations were used on all boundaries save the downstream boundary where

a Dirichlet condition was used. One can see from Figure 2.14 that the

new computed pressure field, while qualitatively correct, does not match

the experimental data near Y/D=O.1 and 0.5. When this pressure was used

as the new assumed pressure and the marching process repeated with the

MPL technique, the computation exhibited divergent behavior near the

begining of the second bend. Manipulation of the boundary conditions

for the pressure solver did not improve the convergence. When the

laminar flow was computed, which has much stronger secondary flows and

pressure gradients, the same divergent behavior was observed. From

this, one may conclude that the Poisson equation coupled to the MPL

method as outlined above, does not yield a globally stable system of
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equations. There appears to be no mechanism in the system, of equations

to relax the pressure errors. Another problem may be due to the

following. When using Neumann boundary conditions, equation 2.34 is

seldom satisfied by the discretized form of equation 2.32. This leads

to a divergent solution of the Poisson equation. If one Dirichlet

boundary condition is used then equation 2.34 will be satisfied exactly

and a convergent solution will result. This is because BnP on the

boundary with the Dirichlet condition will adjust such that equation

2.34 is satisfied as it must. Unfortunately, this pressure gradient may

not satisfy the normal momentum equation with the velocity field used in

equation 2.33. This inconsistency will not affect the relaxation

solution of equation 2.32 but may infect the pressure field in such a

way that a global iteration procedure between the PL or MPL equation

system and equation 2.32 will not converge.

In other words, 8np based on the momentum equations cannot be used

on all boundaries because the compatibility relation is not satisfied by

the discretized form of equation 2.32. A Dirichlet condition on oneU

boundary cannot be used because the Bnp arising from the solution of

equation 2.32 and satisfaction of the compatibility relation will not be

consistent with the anp as determined from the normal momentum equation

with the computed velocity field.

Recently, Abdallah (1987) developed a discretization scheme for the

Poisson equation such that the compatibility condition is satisfied

exactly by the discretized equations. Equation 2.32 was shown to

converge using Neumann boundary conditions based on the momentum

equations. The Navier-Stokes equation used in this analysis was

discretized using a central difference scheme. The me.,,od has not been
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extended to the backward difference scheme adopted here for the forward-

*marching solution of the Navier-Stokes equation.

2.6 Conclusion

The PL method was shown to be unconditionally unstable in a multiple

pass marching procedure with a equal to any value other than -1.0.

With a:-1, a standard forward difference scheme for the streamwise

pressure gradient results which has been shown to be globally stable as

other investigators have found (see Rubin and Reddy, 1983). The

advantage of the standard PL method (a=-0.01) is that complex flows can

be computed with a single pass of the domain provided a good assumed

pressure is given a priori. The success can be directly attributed to

the fact that one condition, namely the streamwise pressure gradient

condition, was relaxed, due to the small value of a, in favor of

satisfying the global mass flow constraint. This was accomplished by

coupling the continuity equation directly to the momentum equations

during the solution process.

The global stability of the PL method suffered due to the small

value of a, thus, a modified version of the method (MPL) was developed

in an attempt to overcome this lack of global stability. Even with a

large coefficient multiplying the pressure gradients, the MPL method was

found to be globally unstable. When the Poisson equation for the

pressure was introduced, global stability was not assured as the

computations proved. It should be noted that the solution of the

Poisson equation in three dimensions requires large amounts of computer

storage and computation time. This seems to reduce the advantages

gained by using parabolic-marching algorithms over time-marching
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algorithms. It is evident that a new parabolic-marching method is in

order which overcomes the most important hurdle, that of global

stability.

__

U

U
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CHAPTER 3

NEW PARABOLIC-MARCHING METHOD (NPM)

3.1 Introduction

It was found in the preceeding analysis that the PL method was

unconditionally unstable for a global, multiple pass, marching procedure

for all a other than -1. However, if a is equal to -1, a simple

forward difference for the streamwise pressure gradient is recovered

with the downstream pressure known from a previous pass of the domain.

The maximum eigenvalue of the amplification matrix is unity; thus, the

system is stable. This yields a method very similar to that of Rubin

*and Reddy (1983) except that it is on a regular grid. The problem with

such a method is that it is very difficult to compute the first pass of

a complex flow unless a very good prescription of the pressure field is

given initially. The PL and MPL methods generally have little trouble

computing the first pass since one condition is relaxed during the

marchiiug process. Recall that in the PL method the streamwise pressure

gradient is relaxed and in the MPL method tte transverse pressure

gradients are relaxed. This allows for a more stable forward-marching

process with the continuity equation coupled to the momentum equations.

What is apparent is that the pressure gradients cannot be relaxed in

order to achieve a multiple pass procedure that is stable. Yet some

condition must be relaxed during the computation in order to solve

complex flows. The only condition left to be relaxed in a practical way

is continuity.
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The method of Chorin (1967), developed for incompressible flow,

relaxes the continuity constraint while keeping the equation coupled to

the momentum equations. In Chorin's method, an artificial time

derivative of the pressure is added to the continuity equation as in the

following:

1/8 atp + V.Q = 0

(3.1)

where Q is the total velocity vector. This relaxes the continuity

constraint during a time-marching integration of the Navier-Stokes

equation (see Kwak et. al 1984). At convergence, for steady flows, the

computed velocity field is divergence free since 3 tP - 0.

Since a parabolic-marching scheme is under consideration here, and

no time derivatives are present, the continuity equation must be written

in a form other than that in equation 3.1. Successive passes of the

domain may be thought of as an advancement in time. With this in mind,

the continuity equation is rewritten as:

a(pn-pn- 1) + V*Q = 0

(3.2)

where n is a global iteration index and a is a coefficient analagous to

1/BAt in Chorin's method where B is some positive constant. As

determined from the eigenvalue analysis performed in section 2.3.1, the

streamwise pressure gradient must be forward differenced for stable

forward-marching. Therefore, forward differencing of the streamwise

pressure gradient and the replacement of the continuity equation with

equation 3.2 yields the following form of the governing equation:
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axA + ayB + azC - 1/Re (ayyD + azzD) = S

(3.3)

ap+u v w
2

u2+p vu wu

uv iv2+p wv

uw [vw Lw2+P.

0 aaxpnpi n+pin- 1

u 0

v S 2y+29w

w Q2z-2Qv

It should be noted that without the implicit pressure term in the

streamwise flux vector, a globally unstable system results.

3.2 Eigenvalue Analysis

The question now arises whether equation 3.3 can be forward-marched

in a stable fashion. Using the analysis described in section 2.3.1, for

a model two-dimensional problem, the flux vectors A and B are written

as:

A: u2 p B: uv

uv v2+p (3.4)

The negative sign of the pressure term -in A is due to the forward

differencing procedure used for the streamwise pressure gradient. With

this, the two-dimensional form of equation 3.3 is linearized and written

p
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in frozen coefficient form as:

Aj Bxq + Bj ayq - Dj 8yyq = S

(3.5)

where Aj, Bj, and Dj are the Jacobians of the vectors A, B, and D,

respectively and q is the dependent vector (p, u, v, w)T.

a 1 0 0 0 1
Aj= 2u 0 Bj= 0 v u

0 v u j1 0 2v

Dj: 0 1/Re 0

0 0 l/Re

For stable forward-marching, the eigenvalues of the matrix Aj- Dj must

be real and non-negative for proper damping. In addition, the

eigenvalues of the matrix Aj-IBj must be real. For the modified flux

vector A in equation 3.4, the characteristic equation of Aj-Dj is:

X3-X 2 {1/u+a/(1+2ua)}+X(1/u)a/(1+2ua):O

(3.6)

The solution of equation 3.6 gives the folowing eigenvalues:

X1 = 0 , X2 = 1/u , X3:a/(1+2ua)

(3.7)

It is apparent that a can be negative and still give a system which is

naturally dissipative if u is positive. Since the analogy was drawn to

time-marching methods where a looks like 1/BAt, a negative value for a
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is not physically realistic. The global stability analysis performed in

section 3.3 indicates that a must be non-negative for global stability

and convergence. For Aj-IBj, the characteristic equation is:

X3 (1+2ua) - X2{2av+v/u(1/(1+2ua))] + X(2av2/u-1)+v/u : 0

(3.8)

Solution of equation 3.8 gives the following eigenvalues:

X1 = v/u

X2 ,3 = {av± av)2+(1.2ua)2}/(1+2ua)

(3.9)

One can see that the radicand of equation 3.9 is always positive

regardless of the value of a; thus, the eigenvalues are all real and

*forward-marching will be a stable solution technique.

3.3 Global Stability Analysis

The motivation for making the above modification to the governing

equation is to develop a marching scheme which is stable in multiple

pass mode; thus, the following stability analysis must be performed.

Using the Fourier decomposition in equation 2.13 for the discretized

equation in 2.12 with the modifications made in equation 3.4, the

following relationships result:

Pj An Hj An- 1

(2.14)

where
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* a(L1+Z4) ii L

Pj -(L1 +Z4) 2ut 1+vI2-Z3  uZ2
,2  Vi1  ut1+2vI 2-Z3j

and

a 0 0

Hj= -5 0 0

0 0 0

with

11 - cos Ox + I sin ex

12 = (Ax/Ay) I sin ey

L3 = 2Ax (cos ey - 1)/(Re(Ay) 2)

4 = cos Ox - I sin Ox

15 = cos Ox + I sin ex

* (3.10)

The amplification matrix G is:

M1  0 0

G = Pj-1 Hj: M2  0 0

M3  0 0

(3.11)

where

M1 =(a( (2ut 1 +v12-Z3 ) (ut I+2vL2-Z3 )-uv i 2 )

+15 ( .1 (ut 1+2vt 2-13 )-vt 112 ))/I PJI
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M2 =(a((ti+£4)(u£i+2v£ 2 - £3 )+u£ 2
2 )

-£5 (a(Z1+Z4) (u£ 1+2v£2 -£3)-9 2
2 ))/lPjI

MP=(a( -( Z 1 +Z4) vt 1-Z2 (2ul 1+v12- Z3) ) +95 (a ( 11+Z4) v£i1-1 t2) ){PJ

Pj I =a(I 1£ 9+4) ( (2u£ 1i+v12- 9£3) (ut i+2v£2-Z3 ) -uv£ I 1 2)

+Z1( ( 1+t4)(u£+2vZ2-X3)+ut2 2)

-£2( ( £ +£4) v£ +£2(2u£ I+2V£2- 3) )

The eigenvalues of G are then:

Xii
X1I = M1

X2 ,3 = 0

(3.12)

The maximum value of X1 can be determined by setting ex=ey=r which

gives:
It

IX1 = I 1-2/[a(2u+c)+1] I

(3.13)

where c=2Ax/Re/(Ay)
2

Therefore, if a is non-negative, the maximum eigenvalue is always

less than unity regardless of the value of c. Thus, the scheme appears

to be unconditionally stable in multiple pass mode. From equation 3.13,

one can determine that the lower bound for a is zero. For a less than

zero, the maximum eigenvalue is greater than unity and the error will

grow without bound. This is not surprising since a is analagous to

1/BAt in time-marching methods. For completeness, the stability

characteristics for all wave numbers for various combinations of

parameters should be studied. Again let u=v=1 and Re: 1000 and plot the

real part of X* X for all wave numbers in Figure 3.1 for a arbitrarily
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set to 0.2. With this set of parameters, one can see that the method is

stable for all wave numbers. The maximum values of X*XI occur at the

limits of the frequency spectrum. The minimum values are found near

ey/ir=0.6. With the ratio u/v changed from unity, the stability

characteristics do not change. Also not an important parameter is the

Reynolds number which was changed from 10 to 106 with no significant

difference in the stability characteristics. With the ratio

Ax/Ay=0.01, the stability characteristics are plotted in Figure 3.2.

It is evident that the maximums are now confined to y /i=O and 1,

however, the scheme is stable everywhere. The minimums are still found

near y/7r=0.6. With Ax/Ay set to 100, the stability characteristics

are much different (see Figure 3.3). The maximum values of X * I are

now confined to a very thin region for ex/w less than 0.01 and greater

than 0.99. Large values of a should severely underrelax the dependent

variables as does a small At in a time-marching method. The value of a

was varied from 1 to 100 and the differences in the global stability

characteristics are given in Figure 3.4. One can see that there is no

value of X*X1 greater than unity so that the system is stable for a

multiple pass solution procedure.

The above analysis was performed for a two-dimensional system and it

was assumed that the results were applicable to three-dimensions. For

completeness, the stability analysis should be performed for three-

dimensions. Recall that:

Pj An = Hj An- 1

(2.14)

where Pj and Hj are now given as:
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a 0 0 0

-15 0 0 0
Hj

0 0 0 0

0 0 0 0

-- and

a 1I Z2 96

-1 2uZ1+v9£2+wk6-Z 3-9.7 uL2  uZ6Pj =

2 V91 u£1+2vt 2+wZ6-£3-k7 vZ6

26 wi1  wk2  u9-1+v1 2+2wk6-. 3-Z7

where Z1,2 ,3 ,4,5 are defined in equation 2.15 and

Z6 = (Ax/Az) I sin ez

97 = 2Ax (cos ez - 1)/(Re(Az)2 )
I

For ex=ey=ez= the maximum value of X1 is

IX1 1-2/[a(2u+c+d)+1]

(3.13a)

where c=2Ax/Re/(Ay) 2 and d=2Ax/Re/(Az)2 . Thus, if a is positive, the

system in three-dimensions is stable for multiple passes. Since the

discretization of the governing equation is consistent, by Lax's theorem

one may state that the system is also convergent. In actual practice,

no method is always convergent for complex turbulent flows, however,

confidence is high that the new method will outperform both the PL and

MPL methods.
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3.4 Convergence of the Method

H It is important to show that the method is able to converge to

machine precision to show that artificial energy losses are not

introduced with the introduction of the pressure term in the continuity

equation. The developing laminar flow in a straight duct with square

cross section was computed on a coarse grid with a=0.01. The resulting

convergence history is given in Figure 3.5. Convergence to machine

precision (1 x 10-16 on the IBM 3090-200) is achieved and no divergent

behavior is apparent. Regarding convergence rates, it is known that the

value of the maximum eigenvalue sets the convergence rate of the global

iteration process. That is,

en/en -1  1/1X11 = 1/p(G)

a (3.14)

where p(G) is the spectral radius of the amplification matrix G. Thus,

if X1 is minimized, the rate of convergence will be maximized. It is

apparent that equation 3.13 can be minimized if:

a= 1/(2u+c)

(3.14a)

For u=v=1, Re= 1000, Ax=Ay=1, the optimum value of a is 0.5. This may

reduce the largest value of the eigenvalue but comparison of Figures 3.1

and 3.6 shows that for other wave numbers, the eigenvalues for a=0.5 are

generally higher than for a=0.2. Therefore, the apparent optimum value

of a may not yield the fastest convergence. Similarly for three-

dimensions, the optimum value for a is:
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a= 1/(2u+c+d)

(3.14b)

A problem with parabolic-marching methods in general is that, since

pressure information propagates upstream only one streamwise step per

global pass, the downstream pressure boundary condition will not

influence the inlet flow until the same number of passes as streamwise

steps is made. Also, small wave length errors, order Ax, are damped

out quickly while large wave length errors, order NAx, are damped out

at a much slower rate rate or not at all. Because of this, convergence

of any parabolic-marching method is very slow and the NPM method is no

different.

One technique for accelerating the convergence of the numerical

method is the multigrid procedure of Brandt (1977). In incorporating

* this into the NPM technique, the multigrid procedure would be applied in

the streamwise direction only. The coarse grid equations would be

solved on grids with a progressively increasing aspect ratio. While

this does not reduce the stability of the NPM method as seen in section

3.3, it may severely decrease accuracy if the prolongation operation of

the multigrid is not performed perfectly. Rubin and Reddy (1983) have

used multigrid with their parabolic-marching method but the improvement

in convergence does not seem to be worth the extra computational effort.

Another method for accelerating the convergence of a parabolic-

marching method was recently developed by Tenpas and Pletcher (1987).

Their method solves a modified Poisson equation for a pressure

correction with a single backward pass of the domain after each forward-

marching pass of the mean flow equations. A variable coefficient

multiplies the t ansverse pressure gradient in the Poisson equation
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which is different for each case. The increase in convergence is

impressive but results for a flow with large transverse pressure

gradients have not been published by them and one must wonder what the

influence is of the modified transverse pressure gradient in the Poisson

equation.

3.5 Transformation and Discretization of the Equation

In order to implement boundary conditions in a straightforward

fashion for complex geometries, it is desirable to solve the governing

equation on a generalized coordinate system. Therefore, the equations

solved must be recast into the generalized coordinates using the

following transformation:

n = n(x,y,z)

: (x,y,z)

The full equation, 2.1, is transformed using a chain rule

conservative formulation. The Cartesian velocity components and the

pressure are still the dependent variables, however, the equation is now

solved on a generalized coordinate system. The modifications made to

equation 2.1 in the x-direction which yielded equation 3.3 are now made

in the streamwise &-direction giving the following relation:

L& + Ln + L- 1/(J Re) (Lnn + LC) : -1/(J Re) n + S'/J

(3.15)

where

+ + +
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Ln=nxaA+ TnyaB + TzaTC)/J

*LC=(CxaA + CaB+ CzaCC)/J

Lnnz1nxan{( 1+Vt)llxarDI *Yyar~{( l+Vt)TlyariD} +n~zaj{( 1+vt)rizTD}I

-LCC=x8Cf(1+vt)CxarD1 +Cy8C{(1+vt)Cya D1 +Cz3C{(1+vt)Cz8CD}

LnCxan{( l+\t)CxBCDj +,ny8-n(1+Vt) y8 D1 +Tz3T{(1+Vt)CzaCD}

+Cxa~{(1+Vt)njx3 nDJ +caj1vtryr +Cza~{(1+Vt)nz3anD}

where J is the Jacobian of' the transformation given by:

* = x(fly~zflz~y) - fx( y Z- Zcy) + cx( YTnz- zfy)

(3.16)

and vt is the eddy viscosity described in chapter IV. Also notice that

Hthe cross derivative term L is held explicitly since the Linearized

Block Implicit (LBI) solution procedure of Briley and McDonald (1980)

cannot treat such terms implicitly.

The vectors in equation 3.15 are:

ap+u v w

A. u2 _p vu wu

uv B v-_p C Wv

uw Vw w2 _p

u v w

u2+p vu Wu

uv B= V2+ C= :

Luw JLvw 1L +
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0 xa(pin-l-pi_1n)

u ,-&x(Pi+l n-l-pi-,in)

v -&y(Pi+i n-1-pi- in) + Q 2y+29w

w :&z(Pi+1n-i-pi_1fn ) + 92z-2Sv

- Equation 3.15 is discretized using a two point backward difference

scheme for streamwise derivatives and a three point central difference

scheme for all transverse derivatives. A linearized form of the

governing equation is obtained by using truncated Taylor series about

i-I as follows:

Ai = Ai I + 8qA Aq

(3.17)

where aqA is the Jacobian denoted by Aj and Aq is the streamwise change

I in the dependent vector.

Aq [Ap,Au,Av,Aw]T

(3.18)

U

Aq =qi - qi-1

(3.19)

Wher equation 3.17 is applied to all the vectors in equation 3.15 except

S, the standard delta form of the discretized equation results giving:

L. +L +L. ) Aqi = R

(3.20)

where

L& = convection terms in &-direction

I|
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Lc convection and diffusion terms in a-direction

_ L : convection and diffusion terms in c-direction

R = terms from Eiuler implicit differencing and cross

derivative diffusion terms

The onerator on the left side of equation 3.20 is split into two

components which yields block tridiagonal matrices which can be solved

easily. Solving for Aq in this way is the basic LBI scheme of Briley

and McDonald (1980) which is essentially ADI for a vector system. The

method is second order accurate in the transverse plane but first order

accurate in the streamwise direction. Full second order accuracy can be

obtained using three-point backward differences for the streamwise

gradients. Since truncated Taylor series are used to discretize the

governing equation and no averaging is used, the discretization is

consistent by definition. The method does, however, introduce an

inconsistency in the form of a splitting error.

3.6 New Solution Procedure

3.6.1 Splitting Error in LBI Scheme

The discretized Navier-Stokes equation appears to be second order

accurate. However, when using the LBI scheme of Briley and McDonald

(1980), a splitting error arises which may reduce the overall accuracy

of the method. When the LBI scheme is applied to a space-marching

method, the splitting error not only reduces accuracy but may destroy

the solution due to an inconsistency in the splitting error. This error

can be examined by using the PL method. Equation 2.2 can be written in

frozen coefficient form as:
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(Aj, + A&Bja n " + ACjar*)Aq = R

(3.21)

The diffusion terms are neglected to simplify the analysis. Equation

3.21 is generated using an Euler implicit differencing technique and the

operator on the left-hand side must be split to obtain matrices which

can be inverted easily. The split can be carried out in one of the

following two ways.

System one

first solve (Aje + A&Bjan-)Aq*:R

then solve (Aj" + A CjaC-)Aq=AjAq*

(3.22)

which is the system used by Pouagare and Lakshminarayana (1986), or

System two

first solve (Aj, + ACCjaCs)Aq*=R

• A *
then solve (Aj, + A Bja n )Aq=AjAq

(3.23)

When system one and two are recombined, their respective splitting

errors are:

System one

The splitting error = A 2 (Bj Aj-Icj) a i a; Aq

(3.24)

System two

The splitting error = A&2 (Cj Aj-IBj) a " ac Aq

=!
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(3.25)

The splitting errors in equations 3.24 and 3.25 are equivalent if and

only if the matrices Bj and Cj are commutative matrices which they are

not in general. This was recognized by Briley and McDonald (1980) but

was not considered to be a problem since, for time-marching methods, the

splitting errors are multiplied by a time change in the dependent vector

which tends to zero for steady flows. For parabolic-marching methods,

the splitting error is multiplied by the streamwise change in the

dependent vector which seldom goes to zero. Thus, the splitting error

goes to zero only if the streamwise grid is refined. Refining the grid

by one order of magnitude will give a two order reduction in the

splitting error. Recall though, that adding ten times more streamwise

grid lines could increase the number of global iterations of a

parabolic-marching scheme by as much as thirty times. Also, a more

refined grid, while giving increased accuracy will require much more

computer time per global iteration. The magnitude of this error is

unknown and so should be investigated.

The matrix multiplication found in equations 3.24 and 3.25 can be

performed for the PL method.

For system one

0 0 w/u 0

0 0 w v

Bj Aj 
1Cj =

0 w/o 2wv/u -u/a

v/u 0 w2 /u vw/u

(3.26)
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For system two

0 0 0 v/u

0 0 w vCj Aj-IBj : w/
w/u 0 wv/u v2/u

0 v/a -u/o 2vw/u

(3.27)

Recall that the order of the equations is continuity, x-, y-, z-

momentum; thus, the error is the same for the x-momentum equation and

very similar for the y- and z-momentum equations. However, the error in

the continuity equation is much different between the two systems.

With the elements of Aq being roughly the same, if v is much larger

than w as would be the case for a duct curving in the x-y plane, then

one expects system one to give a smaller error in the continuity

equation than system two and thus better results. This observation will

H be born out in section 3.6.3. One other problem that should be noted is

that, since a forward-marching procedure is under consideration, the

error will build up with each marching step. There is no mechanism to

reduce the error as the computation progresses.

3.6.2 New Solution Method

The error can be significantly reduced by iterating equation 3.21 at

each streamwise station. For convenience the equation under

consideration, i.e., equation 3.20, is repeated here.

( Lc +Ln  +LC" ) Aqi = R

(3.28)

An iterative form of 3.28 can be written as:
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( Lc" +LT" +LC" ) Asim = R'

R = R - ( Lc +LT" +L"* Aqim-1-

(3.29)

where Asim=Aqim-Aqim - 1 with m as an iteration index and R' being the

solution to the Navier-Stokes equation within the formal accuracy of the

discretization.

The operator on the left side of equation 3.29 can now be split as

in the LBI scheme, however, the splitting error is reduced with each

iteration at streamwise station i since Asim tends to zero. To improve

convergence, Aqim is updated using the following relationship.

Aqim = Aqim -
1 + W Asim

(3.30)

I where w is an underrelaxation parameter which usually is set to a value

of 0.7.

The solution procedure for equation 3.29 is as follows. At

- streamwise station i, the operator in equation 3.29 is split using

either system one or two using R as determined from the previous

streamwise station and the value of Aqim-1; for the first iteration

this is the converged value of Aq at i-I. With the right-hand side

known, equation 3.29 is solved for Asim which is used to update Aqim

using equation 3.30. The procedure is repeated until As drops at least

two orders of magnitude. Such convergence is usually achieved in five

iterations. After convergence, the procedure is advanced to the next

streamwise station and repeated until the entire domain is computed. In

short, the bplitting error is iterated out of the solution at each

streamwise station and thus the discretized system retains its formal
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second order accuracy.

* 3.6.3 Error in Curved Duct Flow

In order to examine the effect of the splitting error and the

ability of the new solution method to reduce it, the laminar flow in

Taylor et al.'s (1981) strongly curved duct was computed. The geometry

is given in Figure 3.7. The radius of curvature Rc is 2.3D and the flow

Reynolds number based on D and the bulk inlet velocity is 790. The

inlet velocity field was interpolated from the available experimental

data and a radial pressure gradient based on simple radial equilibrium

was used as the assumed pressure for the PL method. The marching

procedure was started at the inlet plane * = 00 and progressed to *
780. The computational grid included 21 points in the radial

* direction, 11 points from the lower wall to the symmetry plane and &

20. Recall that the major motivation for the new solution method is to

maintain a high degree of accuracy with a coarse grid for improved

convergence of the parabolic-marching method. The afore mentioned

splitting error is small for fine grids. Indeed, the prediction of this

flow by Pouagare and Lakshminayana (1986), reprinted in Figure 3.8, is

very accurate for a grid of 41 by 21 in the cross plane and A£= 0.50, 4

nearly 15 times as many points as the present computation. The method

used by Pouagare and Lakshminarayana is equation 3.28 using the system

one splitting procedure. This method was used as well as that using the

splitting procedure of system two on the coarse grid and compared to the

results obtained by the new iterative solution method.

Computed streamwise and transverse velocity profiles at * 77.50

are presented in Figures 3.9 and 3.10, respectively. Careful
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examination of the results shows the pronounced effect of the splitting

error. The results using system one agree reasonably well with the

experimental data as does those of the new solution method. The results

from using system two are very poor as was predicted from the analysis

in the previous section. The difference between the two systems is

quite dramatic and is due soley to the effect of the spliLting error.

The new solution method produces results closer to the experimental data

especially in the secondary flow predictions. Note the large deviation

from the data at y/D = 0.9 in Figure 3.10 for system one while the

results of the new solution procedure compare very well.

The residual in the continuity equation is plotted in Figure 3.11

verses the streamwise station for the three methods of splitting the

operator. Notice that the residual for system one is much less than for

system two as anticipated, however, the error is clearly unbounded as

the computation is carried farther downstream. On the other hand, the

error in the continuity equation using the new iterative solution method

is much lower and remains low. It is evident from this result that theU

extra computational effort required by the new solution method is

justified.

The convergence history of the iterative LBI scheme at a typical

streamwise station for this flow is given in Figure 3.12. Strong

convergence is exhibited for all variables. It should be noted that

system one and two were used in alternative iterations and is the reason

for the small spikes in the convergence history. Clearly, one splitting

system is better suited to this flow but the iterative scheme still

converges.
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3.7 Boundary Conditions

i For the internal turbomachinery problems for which the NPM method

was developed, only four different boundary conditions are considered.

First, the no-slip boundary condition is the proper boundary condition

for viscous flow near a solid boundary. For such a condition, all

velocities are set to zero on the boundary with the normal gradient of

the pressure set to zero following boundary layer theory. A two point

backward difference scheme is used for the pressure gradient condition

in order to couple the odd and even points more strongly (see Pouagare

and Lakshminarayana (1986)). This condition is always used for laminar

flows. Second, for turbulent flows, the no-slip condition may also be

used. However, under special circumstances, namely high turbulance

intensities with a coarse grid, a turbulent slip velocity must be used.

1This slip velocity is based on the log law-of-the-wall and is determined

as follows:

* Qwall = Qp - u,/K

(3.31)

where Q is the total velocity, K is the von Karman constant, and u, is

the friction velocity determined from the following relationship:

Qp/u* = 5.8 log y+ + 5.0

(3.32)

where y+ = Re u* np

(3.33)

np is the normal distance from the boundary to the first grid point.

This condition is carefully applied so that the resultant velocity
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component is tangent to the boundary surface.

* Third, on a symmetry plane, the normal gradient of the velocities

tangent to the plane, one of which is the streamwise component, is set

to zero. The velocity component normal to the plane of symmetry is also

set to zero. The normal pressure gradient is set to zero across the

symmetry boundary. A two point backward difference scheme is employed

for these gradient conditions both implicitly and explicitly.

Finally, for most of the turbomachinery flows investigated here,

there are substantial regions of the flow which are spacially periodic.

Thus, a periodic boundary condition is used upstream and downstream of a

blade row. This condition can be enforced in several ways. First, the

condition can be enforced implicitly. This requires the solution of a

periodic matrix which can be solved using a recursive formula. The

matrix has the form:

b c a

a b c

Ca b

Without artificial dissipation, central difference schemes notoriously

produce uncoupled solutions. The solution of the equations with

implicit periodic boundary conditions exacerbates the odd even

uncoupling.

Second, the periodic condition can be applied explicitly. The

computational domain can be extended to include the periodic line on

both sides of the domain. The value of q computed at the previous

iteration in the transverse plane is used as boundary conditions outside
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the periodic lines. Thus, two different values of q might be computed

*on the periodic line, an upper and a lower value. To maintain

periodicity, the upper and lower values are averaged to give the value

of q on the periodic line. This slows convergence of the iterative

scheme in the transverse plane but periodicity must be enforced.

Uncoupling of the odd and even points is not as severe when the explicit

condition is applied. It shculd be noted that for coupling purposes,

the normal pressure gradient equals zero condition is always applied

implicitly regardless of which boundary condition is used. Experience

has shown that there is no great loss in accuracy, even in periodic

regions, when this condition is used, however, the coupling of the odd

and even points is greatly enhanced.

At the inlet plane, only the velocity components are needed as inlet

* boundary conditions. This inlet field can be generated from available

experimental data. Downstream, only the pressure is used as a boundary

condition and so needs to be specified. Since the flow is

m incompressible, the level of pressure is not important but the

transverse pressure gradients downstream shou'.d be correct, i.e., match

the experimental data or analysis.

3.8 Algorithm Verification

The NPM algorithm must be calibrated for convergence and accuracy on

a simple laminar flow before one can have faith in its ability to

predict the complex, turbulent flow in a turbomachine. The most simple

yet non-trivial laminar flow that can be computed is the developing flow

in a straight duct with a square cross-section. Once a successful

computation of this flow has been achieved, the laminar flow in an S-
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shaped duct of square cross-section is computed since this flow is

* characterized by large streamwise variations in the transverse pressure

gradients as well as large secondary flows. These characteristics are

also found in most turbomachinery flows.

3.8.1 Developing Laminar Flow in a Straight Duct

For this case the Reynolds number based on the duct width was set to

- 50. The domain was extended to 6 duct widths downstream where fully

developed flow should be present. A grid density of 21x21 points was

used in the cross-plane while 25 points were used in the streamwise

direction. Exponential stretching was used to pack grid points near the

entrance region. A uniform inlet profile was used to start the marching

process and a unifrom pressure field was used as the downstream pressure

boundary condition. For these conditions, the optimum value for a is

computed by equation 3.14b is a=O.2. The value of a was varied from 0

to 0.4 in order to study its effect on the rate of convergence. Figure

M 3.13 shows the convergence history for a = 0, 0.01, 0.2 and 0.4. It is

evident that for the initial passes, convergence is faster for a not

equal to zero as the analysis professed. Overall, the fastest

convergence was achieved with a:O.O. This is not suprising since the

normal pressure gradients are essentially zero and the satisfaction of

the global mass flow constraint, through continuity, is the driving

mechanism in this particular flow. Therefore, with a=0.0, convergence

should be achieved in as many global iterations as there are streamwise

points which is indeed the case. Still, with a not equal to zero,

convergence is achieved (initially at a faster rate) but clearly a=O.2

is not the optimum value. This gives credence to the observation that,
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while an optimum value for a apparently can be computed for one set of

wave numbers in the spectrum, it may not be the optimum value for all

wave numbers.

The computed centerline coefficient of pressure and the centerline

velocity are compared to the analytical results (see White (1974)) in

Figures 3.14 and 3.15, respectively. One can see that the computed

coefficient of pressure compares favorably with the analytical results

- except very near the duct entrance. The computed centerline velocity

compares well with the analytical results only far from the entrance.

In the entrance region, the velocity profiles tend to bulge near the

walls of the duct reducing the momentum in the center of the duct. This

is most likely due to the development of spurious transverse pressure

gradients which suppress the diffusion of momentum from near the wall to

* the center of the duct. This did not occur when the PL technique was

used by Pouagare and Lakshminarayana (1986). This is because in the PL

technique, the small value of a essentially removes the effect of the

transverse pressure gradients from the computation. These spurious

transverse pressure gradients are not large and diminish to zero past

the entrance region. Grid refinement in the entrance region should be

all that is necessary to reduce this problem. In the fully developed

flow region, the exact centerline velocity is computed and the computed

velocity profiles compare very well to the analytical results in Figure

3.16. These results did not change for the various values of a. This

proves that at convergence, the continuity equation is satisfied within

the accuracy of the discretization everywhere and the global mass flow

is conserved.

LJ
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3.8.2 Laminar Flow in an S-Shaped Duct

UThe entry flow in a straight duct, while not trivial, is not

characterized by a streamwise variation in the transverse pressure

gradients as is a typical turbomachinery flow. Thus, the laminar flow

in an S-shaped duct was computed to determine the NPM method's ability

to resolve the large variations in the transverse presure gradients as

well as the strong secondary flows present. The flow was measured by

Taylor et al. (1982) using a laser Doppler velocimeter. The geometry is

given in Figure 2.9 along with the measurement locations. The radius of

curvature was 7D to the center of the duct. The Reynolds number based

on the bulk inlet velocity UB and the duct width D was 790. The

computational domain extended from XH = -2.5 to 8.0 and from zero to D

in both the Y and Z directions. The conptuational grid consisted of 47

points in the streamwise direction spaced evenly and a 25 by 21 grid was

used in the cross-plane with exponential stretching included to pack the

grid points near the walls. The inlet conditions were determined by

computing the developing flow in the entrance region up to XH=-2.5 using

the PL technique.

Recall that for the developing flow in a straight duct, the best

convergence was achieved with a=0.0. With a=0.O, the governing equation

is essentially unmodified and the method is no different than the PL

method with a=-1.0. However, with no assumed pressure distribution,

the computation could not progress to the end of the domain successfully

with a=0.O. With a set to 5.0, however, the computation was successful.

Figure 3.17 shows the convergence history for a=5.0. Convergence to two

orders of magnitude were achieved in 140 global iterations. Total CPU

time on the IBM 3090-200 at The Pennsylvania State University was 1.87
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hours or 0.00195 seconds per point per global iteration.

Figure 3.18 shows the computed pressure distribution for the S-duct.

No experimental data is available for the Cp distribution for the

laminar flow but the computed head loss is very close to that for the

-developing flow in a straight duct with the same inlet conditions. The

results are certainly qualitatively correct with a negative transverse

pressure gradient in the upward curving region switching to a positive

gradient as the duct turns back. Indeed, when comparing the computed Cp

to that measured for turbulent flow (see Figure 2.14), the fine details

of the distribution agree very well qualitatively.

The computed velocity profiles are compared to the experimental data

in Figures 3.19 through 3.26. The agreement between the computation and

the experimental data is excellent in all regions of the flow. At

station 1, just upstream of the initial bend, the computed velocity

field is no longer symmetric and a small secondary velocity exists owing

to the transverse pressure gradient effect. Since streamwise

ellipticity was reduced to first order in the NPM method, it is apparent

that the pressure ellipticity is sufficient for an accurate prediction

for this type of flow. At station 2, a strong secondary flow is

developing due to the influence of the centrifugal force and the end

wall boundary layer. This is typical in turbomachinery blade rows.

Again, agreement with the experimental data is excellent at all

measurement locations. At station 4, the reversal of the secondary flow

due to the change in sign of the transverse pressure gradi&'.aa ias beguts.

Also apparent is the bulge in the streamwise velocity profile at Y/D=0.7

indicating the center of the secondary vortex. Again the method

accurately predicts all these flow phenomena. Finally at station 5, the

pI
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secondary flow reversal is complete and the influence of the straight

portion of the duct outlet, through the streamwise pressure gradient,

has begun to straighten out the flow at Y/D=O.9. At this location, the

streamwise profile is not well predicted near the symmetry plane. It

should be noted that the grid is sparse in this region and may have led

to the poor prediction. This exemplifies one of the major obstacles

hindering a true prediction of the flow. If experimental data were not

present, the secondary vortex that generates the odd profile at Y/D:0.9

would not be anticipated and a fine grid would normally not be placed in

that region.

Overall, the agreement with the experimental data for the S-duct was

excellent. This case proved that multiple passes of the partially

parabolized Navier-Stokes equation as a solution procedure is capable of

transmitting downstream pressure effects upstream albeit slowly and that

the NPM method converges even when all the pressure gradients are

substantial. Also, the case proved that the NPM method is superior to

multiple pass methods which only forward difference the streamwise

pressure gradient with no other modifications since the flow could not

be computed with a=O.O.

3.9 Closing Remarks

In the most general terms the NPM method is a line relaxation of

Chorin's method with no unsteady velocity terms. With the inclusion of

the pressure term in the continuity equation, it has been shown that

convergence is improved over a partially parabolic system with no

modifications. Also, the extra term tends to improve the coupling of

the odd and even points. In addition, with a non-zero element in the
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1,1 position of Aj, diagonal dominance is assured and the amount of

pivoting required in the solution of the block tridiagonal matrices is

reduced considerably with a saving of computation time. It should be

noted that no implicit or explicit smoothing is required for good

results. Due to the one-sided differencing of the pressure gradient

boundary condition and the one-sided differencing of all streamwise

derivatives, there is a small amount of artificial dissipation

introduced.

The method has been shown to accurately introduce the streamwise

ellipticity due to the pressure as seen in the S-duct results. This is

the most important feature of the method since strong pressure

ellipticity is the reason one cannot use the PL or MPL method with

success. The method has been used to compute laminar flows with

excellent results and so it should be able to compute complex turbulent

flows with success with the inclusion of turbulence models.

Due to the parabolizing assumptions made in the governing equation,

only H-type computational grids can be used. A description of this type
U

of grid and an algorithm for generating them is described in the

appendix. Also, the flow near blunt leading edges cannot be computed

accurately due to the lack of streamwise diffusion in the governing

equation.
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CHAPTER 4

TURBULENCE CLOSURE SCHEMES

4.1 Introduction

Direct simulation of the turbulence by solving the unsteady Navier-

Stokes equation at the Kolmogorov scales is a monumental task for

complex turbomachinery flows. Thus, a simplified form of the equation,

namely the Reynolds averaged Navier-Stokes equation, is used which is

similar to equation 2.1 with the variables being time averages. The

Reynolds averaging also introduces time averaged products of velocity

fluctuations called Reynolds stresses. These Reynolds stresses can be

interpreted as apparent additionsl shear stresses and related, using the

Boussinesq approximation, to a mean velocity gradient with some constant

of proportionality. This constant is termed the eddy viscosity since it

N mimics the kinematic viscosity but is associated with the turbulence

eddies. With this model, the governing equation is in a closed form

provided the eddy viscosity is known. Here lies the difficulty in

modelling turbulence. The eddy viscosity must somehow be modelled using

our knowledge and intuition about the nature of turbulence.

Various models have been proposed with varying degrees of

simplification and empericism. The most simple model is the algebraic

eddy viscosity model which relates the eddy viscosity to some length

scale and a mean velocity gradient. The two-equation k-c model relates

the eddy viscosity to the turbulence kinetic energy and the turbulence

energy dissipation. Both of these models do not include the effects of



112

the anisotropy of turbulence. Unfortunately, turbulence in general is

not isotropic. Flow curvature, rotation and bouyancy all introduce

anisotopy which should be modelled appropriately. The best way to do

this is to use the full Reynolds stress model where partial differential

equations are solved for each Reynolds stress. Some of the terms in

these equations must be modelled themselves which tends to complicate

matters greatly. A compromise between the k-c model and the full

Reynolds stress model is the algebraic Reynolds stress model or ARSM.

The ARSM uses algebraic equations for the various Reynolds stresses and

includes some degree of anisotropy. The ARSM along with the algedraic

eddy viscosity model and the k-E model will be discussed.

4.2 Algebraic Eddy Viscosity Model

From a purely dimensional argument, the eddy viscosity can be

related to some turbulence length scale I and a mean velocity gradient.

Thus, the equation for the eddy viscosity is

Vt = Z2 anQ

(4.1)

A two layer algebraic model developed by Baldwin and Lomax (1978) has

been used here for all shear layers where:

t inner 0 < n < nc

Vt
Vtt outer no < n < 6

(4.2)_

where n is the distance normal to the boundary, 6 is the edge of the
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shear layer and nc is the point where the eddy viscosity is switched

from the inner to the outer formula. The length scale for the inner

formulation includes the van Driest damping function and the total

vorticity replaces the mean velocity gradient in equation 4.1. Thus,

the non-dimensional inner eddy viscosity is written as:

Vt inner =[ic n (1-exp(-y+/A+))] 2IwlRe

(4.3)

where

W /(ayu-axv) 2 + (Bzv-ayw)2 + (axw-azu)
2

r(4.4)

and

y+ = u* n Re

I, =0.4

A+ = 26

u, = friction velocity defined in equation 3.32

n

The outer formulation is based on several emperical constants, the

Klebenov intermittancy factor, and the total mean vorticity.

u outer K Cep Fwake Fkleb Re

(4.5)

where

S nmax Fmax

Fwake minimum of

Cwk nmax QD2/Fmax
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nmax is the distance where F is a maximum from:

K F ic n (1 - exp(-y+/A+))Iw I

Fkleb [ + 5.5( Ckleb n/nmax)
6 ] -

and

QD = Qmax - Qmin

The following emperical constants are applied.

Cop = 1.6

Ckleb = 0.3

Cwk = 0.25

K = 0.0168

In determining the crossover location nc, it has been found to be

more computationally efficient to compute both the inner and outer

components of the eddy viscosity and using the smaller of the two. In

three dimensions, the above formulations were used for the nearest

boundary. It should also be noted that the distribution of F has two

peaks. Experience has shown that taking Fmax to be the second peak

yields the best results. For wakes, only the outer formulation of vt

is used.

The advantage of the Baldwin and Lomax model over other algebraic

eddy viscosity models is that the edge of the shear layer need not be

computed directly. Rather, the shear layer edge is determined from the

vorticity. This is important for internal flows since the freestream or

the inviscid core is not uniform but characterized by some non-zero

gradient. Thus, using the traditional determination of the shear layer
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edge, i.e., at Q .99 Qfreestream, becomes difficult.

* This model can be used for a wide variety of flows with very good

results. Difficulties arise in large interaction regions , e.g.,

separated flows, and highly three-dimensional flows. The algebraic

model contains no 'history' effects of the turbulence and is based on

two-dimensional shear layers only. In order to include more physics in

the model, a two-equation k-e turbulence model can be used.

4.3 Two-equation model

The greatest difficulty with the above algebraic model is that the

r turbulence length scale must be determined in an ad hoc fashion. It is

desirable to determine the turbulence length scale and velocity scale

from partial differential equations derived from physical

considerations. The turbulance velocity scale can be found from the

scalar turbulence kinetic energy. An equation for the turbulence length

scale does not exist but the turbulence dissipation in combination with

the turbulence kinetic energy does yield a length scale and a partial

differential equation can be written for the turbulence dissipation.

From dimensional analysis, the eddy viscosity can be related to the

turbulence kinetic energy and dissipation.

vt - k21e

(4.6)

in non-dimensional form, equation 4.6 is written as:

Vt = CP k2/c Re

(4.7)
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The equation for the turbulence kinetic energy can be derived from the

Reynolds stress equation and has the following form:

8xuk + 8yvk + azwk - 1/Re [ ax(Vkaxk) + ay(Vkayk)

+az(vkazk) ] = Pk/Re - c

(4.8)

where

Vk 1+ Vt/Ok.

The turbulence dissipation equation can be derived by taking the

derivative of the unsteady Navier-Stokes equation with respect to the

coordinates, time average, then subtract the mean flow equation and

multiply the result by the unsteady strain rate and the kinematic

viscosity. Taking the time average gives an equation for the isotropic

U turbulence dissipation. The equation includes several terms which must

be modelled. The final form of the equation has the following form:

1uEc + ayvc + azwe - 1/Re ( ax(vBxax) + ay(Vcayc)

+aZ(VE8z) + CFJE/k Pk - C 2c
2 /k Re 0

(4.9)

where

V= + Vt/oG.

The various constants were set to match experimental data for free and

bounded shear layers and dissipation of turbulence in gradient free

flow. The standard values are (see Rodi (1982)):

CE 1 = 1.44 CE2 = 1.92
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y= 1.-0 ac 1.3

UCI 1 =O0.09

The production of turbulence is given by the following simplified

relationship:

P= vt[(BI, Q) 2  (3C Q)2 ]

(J4 .10)

The k-E equations must be recast into generalized coordinates in a

manner similar to the mean flow equations. Thus, the k-equation

becomes:

L&+ L+ L - 1/(J Re) ( LnT + LtC) 11I(J Re) LyI + S/

(4I.11)

where

Lv(&x3&uk + yarvk + z3-wk)/J

- Lry=(T1x8Tuk + Tnyalvk + nzlnrwk)/J

LC=(rlx8Cuk + CyaCvk + awk/

L~yrjn~x 3 {vknxa yjk} +ny3,flvkfly~nl +njzaf1VklzaTlk}

LC=xC~~ak +C,3 {Vk~y3Ck1 +~C Vk~zBk}

LT~r=lXarIVktx3;k} -yaT{Vk~yakl +flzaTjVk~z3Ck}

+CXa {Vkflx3rjk} + y8C{Vkflyaflk} +Cz3C{Vkflz8ak}

ST =Pk/Re- c

Similarly, the c-equation becomes:
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L& + Ln + L - 1/(J Re) ( Lnn + LC) + ST/J : - 1/(J Re) LnC

(4.12)

where

L&:(&x3UE + &y8VE + &zaWC)J

L :('xaUc + rlyanVc + nzBnWc)/J

LC=(Cxa U + CyaVE + CzaCWC)/J

Lnn ~nxan{vnxanc } +nyn{VETnyanE} +nZan{VcnzanE}

Lc:=xa {VCCx3 C } +CyB{VE~yaC} +4cZ3{£vEza C}

Ln :nxn{[V xBEX } +nyn{ vyaCI} +nzan{Eza;}

* +CxaC{VCTnxanFj} +4y { Yn +aZaVyzTnEIznE I}

ST = Ce1CPk/(k Re) - Cc2c 2/k

The k-E equations are weakly coupled and so are solved in an uncoupled

fashion with the k equation solved first. Equations 4.11 and 4.12 are

discretized in the same manner as the mean flow equations and solvel in

the cross plane using the alternating direction implicit (ADI)

algorithm. T; solution of the equations is lagged one streamwise

station behind the mean flow equation using the velocities previously

computed.

4.3.1 Boundary Conditions

Since the k-c equations are valid only in regions where the

turbulence Reynolds number is high, wall functions are used to give
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boundary conditions for the turbulence kinetic energy and dissipation

*which avoids having to solve the k-c equations in the viscous sublayer

and buffer region of a bounded shear layer. The boundary conditions are

those proposed by Rodi (1982). At the first point from a solid

boundary, the following values of k and c are applied and the k-c

equations are solved in the rest of the domain.

kp = u*2 /1C-

(4.13)

E p u*3/(K np)

(4.14)

where u* is the friction velocity defined in equation 3.32. For these

wall functions to apply, the first point from the solid boundary must be

3 no closer than at y = 20. Although the use of these wall fuctions

implies the use of a turbulent slip velocity as a boundary condition for

the mean flow, the no-slip boundary condition is generally used except

for extremely thin boundary layers.

At a symmetry boundary the normal gradients of k and c are set to

zero. For periodic boundaries, the periodicity condition is enforced

implicitly using a periodic matrix solver.

4.3.2 Initial Conditions

Two methods can be employed to generate initial conditions for the

k-c equations. First, when experimental data is available for the

turbulence intensities, the turbulence kinetic energy is determined

from:
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k 1/2( u'2 + v 2 + w' 2 )

(4.15)

With the Reynolds shear stress measured, the definition of the eddy

viscosity can be used along with the previously computed turbulence

kinetic energy to give the turbulence dissipation in the following way

(two dimensions are used for example):

1 1 2u C k /c Re 8T Q

then

C = -C1 k2 Re anQ / u v

V (4.16)

Thus, k and c are known at the inlet plane and the equations can be

forward-marched behind the mean flow equations.

If the experimental data is not available, the algebraic eddy

viscosity model is used to give the eddy viscosity. Then equilibrium is

assumed so that production equals dissipation or:
U

C = Pk/Re

(4.17)

and

k = vtc/(CpRe)

(4.18)

A major problem associated with the k-c model is that the constants

in the equations are based on simple two-dimensional shear layers. In

addition, the turbulence length scale is generally over predicted which

artificailly suppresses boundary layer detachment in the computation.

I'I
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Another problem with the model is that it assumes the turbulence is

* isotropic. True anisotropy can only be introduced by solving the full

Reynolds stress equations and not use the eddy viscosity hypothesis.

This is computationally inefficient especially for complex geometries.

It is unfortunate that in the field today, the most simple models are

used on the most complicated flows and the most complex models are used

on the simplest of flows. An efficient way of introducing anisotropy in

an approximate fashion is to assume that the transport of the Reynolds

stresses is very similar to the transport of the turbulence kinetic

energy. In this way, algebraic relations can be written for the

Reynolds stresses.

4.4 Algebraic Reynolds Stress Model (ARSM)

For the turbomachinery type flows under consideration here, the

major generator of anisotropy is rotation of the flow. The rotation

effects the various Reynolds stresses in an unequal way. The Coriolis

force arising from using a rotating coordinate system stabilizes or

destabilizes the turbulence in shear layers. This cannot be captured by

the standard k-e model. By relating the transport of Reynolds stresses

to the transport of k, Rodi (1976) developed the following algebraic

relation for non-rotating systems.

u iu j=k[ 2/36ij+(Pij-2P6ij/3) (1-C2 )/(P+C(C1 -1))]

(4.19)

where 6 ij is the Kronecker delta, Pij is the production tensor and

P=1/3 Pii- Also, C1  1.8 and C2 = 0.6. Along similar lines, Warfield

and Lakshminarayana (1986) developed an algebraic relation for rotating
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flows.

u iu j=k[2/36ij {(Rij(2-C2)/2+ Pij-2P6ij/3)(1-C2)1/(P+E(Cl-1))]

(4.20)

where

Rij=-20p[cipkU ju k + +Cjpk u i u k]

(4.21)

and SIp is the rotation vector and CiJk is the permutation tensor.

Warfield and Lakshminarayana manipulated equation 4.21 to give the

variable C1 Prandtl-Kolmogorov form found in equation 4.22.

C1 = -(2/3)(C 2 -1)(C 2Pk/E+CI-1)/(D I +D2 )

(4.22)

where

D1  : {(Pk/C) + (C 1-1 
2

D2 = [4R 1(2-C2 )/2]
2 + 4(C2-1)(2-C2)R2R12

The following natural groups appeared in their analysis:

(PklE) R1=(k0/E) R2=3nQ /1

Here, R2 looks like a gradient Richardson number. Equation 4.22 for

equilibrium conditions with zero rotation gives a value of CP other

than the standard 0.09 thus it is multiplied by a scale factor to

recover the standard value in such conditions. Also, when the ARSM is

applied, upper and lower limits are placed on Cp of 0.2 and 0.025,

respectively.
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The variable CU method for applying the ARSM is stable and very

nn easy to apply to existing k-c models and is capable of modelling the

physical nature of rotation effects on turbulence according to Warfield

and Lakshminarayana (1986).

4.5 Methods of Solution

Integration of the above turbulence models into the mean flow

equations is straightforward. With the solution to the mean flow

equations known at station i, the eddy viscosity is determined from one

of the various models. This new eddy viscosity is then incorporated

implicitly in the mean flow equations at station i+1. Therefore, the

eddy viscosity is lagged one streamwise station behind the mean flow

equations. The k-c equations are solved in an uncoupled form using ADI

5 and are marched in a fashion similar to the mean flow equations. If the

ARSM is used, the k-c equations are computed at station i using the

value of C11 determined at i-I. With k and c now known, a new value of

* C11 is determined from the ARSM and used to find the new value of the

eddy viscosity. For applications where the eddy viscosity changes

drastically from one streamwise station to the next, an iterative scheme

may be adopted, however, this will prolong the computation time.
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CHAPTER 5

COMPUTATION OF COMPLEX TURBOKACHINERY FLOWS

5.1 Introduction

In order to test the prediction accuracy of the new parabolic-

marching method (NPM), the flow in several different geometries are

computed to test the NPM method's ability to compute various flow

phenomena. Initially, the turbulent flow in an S-shaped duct is

computed since it is characterized by a strong variation in the

transverse pressure gradient. Next, the turbulent flow in an end wall

cascade is computed to determine how well the pressure distribution and

1end wall boundary layer growth is captured as well as the passage

vortex. Since the wakes of turbomachinery blades are very important to

the designer, the turbulent wake of a cascade of airfoils is computed.

This is also a good validation of the various turbulence models

incorporated into the NPM code since the wake spreading is a strong

function of the turbulence. Finally, the flow in an axial flow

compressor rotor is computed to study the combined effects of the blade

and end wall boundary layers, strong secondary flow and rotation on the

flow field.

5.2 Flow in an S-Shaped Duct

The turbulent flow in an S-shaped duct was computed using the NPM

method and results compared to the LDV data acquired by Taylor et al.

(1982). The geometry is shown in Figure 2.9. No assumed pressure was
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used as initial conditions and the inlet flow was determined in the

manner described in section 3.8.2. The computaional domain and grid

used here is the same as for the laminar case presented in section

3.8.2. The flow Reynolds number based on the bulk inlet velocity and

the duct width was 40,000. This Reynolds number proved to be too low

for successful application of the k-c turbulence model described in

chapter IV, thus the algebraic eddy viscosity model was used.

For this case, initial passes of the domain required values of a

larger than for the laminar flow. This trend was observed for all

turbulent flow computations. The convergence history for a=30.0 is

shown in Figure 5.1. The chosen value of a was the minimum value with

which a convergent solution was obtained. Typically, the more complex a

flow, the larger the value of a. Nearly two orders of magnitude were

achieved after 130 global iterations. CPU time on the IBM 3090-200 was

0.00201 seconds per point per iteration. The convergence was not as

strong as with the laminar flow, however, the same characteristics are

present, i.e., fastest convergence for initial sweeps as small

wavelength errors were damped out.

At the initial measurement location, the computed streamwise

velocity profiles compare very well with the experimental data,

especially near the side walls (see Figure 5.2). Near the end walls,

the velocity gradients do not match the data which for internal flows

portends an incorrect computed bulk pressure drop. In Figure 5.3. the

computed secondary velocities at station 1 is compared to the

experimental data with very good agreement. Thus the inlet conditions,

so important for parabolic-marching methods, is accurately captured.

At station 2, the computed streamwise flow does not compare well to
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the experimental data near the center of the duct in Figure 5.4.

Inspection of the profiles leads one to believe that there may be some

computed mass surplus, however, the profiles very near the side walls

were not measured and so a conclusion regarding this cannot be drawn.

The computed mass flow did remain constant at each station at

convergence with less than a 3% variation.

The secondary flow at station 2 has developed properly as seen in

Figure 5.5. The inviscid secondary flow is slightly overpredicted yet

the maximum flow turning in the end wall viscous region is well

predicted. At station 4 in the second bend of the duct, see Figure 5.6,

the computed stre~mwise velocity profiles compare as well to the data as

at station 2. At Y/D=0.1, however, the computed profile does not match

the data qualitatively but at Y/D=0.9 there is excellent agreement

between the computation and the experimental data of Taylor et al.

(1982). The computed secondary flow at this station, shown in Figure

5.7, is in excellent agreement with the data at all measurement

locations. Finally in Figure 5.8, the computed streamwise velocity
n

profiles at station 5 continue to show only adequate agreement with the

data near the center of the duct. The best predictions come near the

side walls. In Figure 5.9, the computed secondary flow profiles compare

well to the experimental data except near the side walls especially at

Y/D=0.9. Here, the measured transverse velocity has an s-shaped profile

and the magnitude of the velocity near the end wall is large. The

computed velocity profile does not exhibit this behavior. This strong

secondary flow may have been missed due to the coarse nature of the

computational grid. Again it should be noted that the velocity

gradients very near the wall do not compare well to the data which may
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give rise to a poor prediction of the bulk pressure drop. Indeed, the

computed transverse pressure gradient is well predicted everywhere while

the bulk pressure drop is not well predict as seen in Figure 5.10. With

the excellent agreement with the data for the laminar case for this same

geometry, the less than stellar prediction of the turbulent flow

implicates the turbulence model. The value of the near wall velocity

gradient is strongly dependent upon the turbulence model. Good

predictions of the skin friction in two dimensions have been achieved by

many users of the Baldwin and Lomax (1978) algebraic model. Therefore,

simple extension of the two-dimensional model to three dimensions

without regard for the actual physics of a three-dimensional boundary

layer may be the reason for the reduced accuracy. The next challenge

then is to compute the turbulent flow in a turbomachinery blade row.

* 5.3 Flow in an End Wall Cascade

The three-dimensional turbulent flow in a turbine end wall cascade

was computed using the NPM method. The flow was measured using a hot
U

wire probe by Flot and Papailiou (1975). The cascade was made up of
0

NACA 65-12-AlO-10 blades with a stagger angle of -15 The span to

chord ratio was 2.1, the pitch to chord eiatio was 0.8 and the flow

Reynolds number was 389,000. The geometry and measurement locations are

given in Figure 5.11. Only the blade region was computed and the

computational grid consisted of 30 points in the streamwise direction

and a 23x23 grid in the cross plane. Both the algebraic eddy viscosity

model and the k-c turbulence model were used to compute this flow.

There was very little difference in computational results between the

two models but the use of the k-c model required more computation time.
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The following results were from the two-equation model. The no-slip

boundary condition was used on the blade surfaces as well as on the end

wall boundary. A symmetry boundary condition was applied at the mid-

span. The inviscid velocity distribution was used as inlet conditions

at the blade leading edge to start the computation.

The convergence history is presented in Figure 5.12. For this case,

a was set to 20 and the pressure residuals dropped one and one half

orders of magnitude in 50 global iterations. At this point, the

convergence flattened out and the computation was stopped in order to

conserve CPU time.

The computed pressure distribution at the mid-span is compared to

the experimental data in Figure 5.13 with excellent agreement. The

inviscid pressure distribution computed from the panel code of Giesing

* (1964), used as the initial pressure distribution, is also presented in

Figure 5.13. The pressure near the end wall is very similar to that at

the mid-span which gives creedence to the assumption that the normal

gradient of pressure is zero following classical boundary layer theory.

The good agreement with the experimental data indicates that the NPM

method is capable of computing the viscous pressure field accurately

unlike the PL method and various other space-marching methods.

The computed streamwise end wall velocity profiles at 44% chord and

88% chord are compared to the experimental data in Figures 5.14 and

5.15, respectively. The agreement with the data is very good near the

suction side and near mid pitch at both streamwise locations. Near the

pressure side, the results are not as good and this may be due to a poor

prediction of the pressure side blade boundary layer. Unfortunately, no

blade boundary layers were measured to verify this. Figure 5.16 shows
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the computed streamwise momentum thickness compared to the the

experimental data. The blade to blade variation is well predicted as is

the level of the momentum thickness. One can see that the secondary

flow is convecting the low momentum fluid to the suction side from the

pressure side boundary layers thereby thinning them. The computed

secondary end wall velocity profiles are compared to the experimental

data at 44% chord and 88% chord in Figures 5.17 and 5.18, respectively.

- At all locations, the overturning of the flow near the end wall is

reasonably well predicted while the flow underturning in the outer

reaches of the boundary layer is underpredicted. Since the streamwise

profiles were well predicted, one can assert that the error is due to a

poor prediction of the transverse pressure gradient near the end wall

which drives the secondary flow. Overall, however, the prediction of

the secondary flow is good.

The passage vortex is clearly visable from a plot of the computed

secondary velocity vectors in Figures 5.19 through 5.21. Careful

inspection reveals that the center of the passage vortex is convected
n

from the pressure side to the suction side boundary. Finally, the

computed mass averaged secondary flow kinetic energy ksec is presented

in Figure 5.22. The secondary flow kinetic energy may be thought of as

unrecoverable energy thus it is indicative of the viscous flow losses

within the passage. From the results presented in this section, it is

apparent that the NPM method is capable of computing the viscous flow in

the end wall region of a turbomachinery blade row. The major feature of

such a flow, namely the passage vortex system, is well predicted.
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5.4 Compressor Cascade Wake Flow

The new parabolic-marching method was used to compute the turbulent

wake of a compressor cascade. The flow field was measured by Hobbs et

al. (1980) using a hot film probe for the near wake and a five hole

probe for the far wake. The blades are double circular arc airfoils
0

with a stagger angle of 20.77 The space to chord ratio is 0.6 and

the flow Reynolds number is 588,000. Although the experimental facility

used end wall suction to ensure two-dimensionality, the computation was

carried out assuming an end wall was present and only results at the

mid-span were considered. The geometry and computational grid at the

mid-span is shown in Figure 5.23. The inviscid pressure computed from

the panel method code of Giesing (1964) was used as the initial pressure

field. The corresponding inviscid velocity at the inlet was used as

inlet conditions as was done for the Flot and Papailiou (1975) end wall

cascade in section 5.3. In order to save CPU time and since the blade

boundary layers are very thin, the inviscid inlet condition was applied

near the mid-chord region where the boundary layer thickness of a

typical turbulent boundary layer reached a height equal to the distance

of the first grid point from the surface. The no-slip condition was

used on the blade surfaces and the slip condition was applied on the end

wall in an effort to achieve two-dimensionality.

The flow was computed with both the algebraic eddy viscosity model

and the two-equation turbulence model. When the algebraic model was

used, the best convergence was achieved with a equal to 10 as seen in

Figure 5.24. The wake centerline velocity computed with the algebraic

eddy viscosity model is compared to the experimental data in Figure

5.25. x is the distance from the trailing edge and Bx is the axial

p
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chord length. Also displayed is the wake correlation of Raj and

Lakshminarayana (1973). The agreement between the computation,

experimental data, and correlation is good, however, the computed wake

defect is underpredicted in the near wake region while it is

overpredicted in the far wake region. The comparison of the computed

wake profiles with the experimental data is given in Figure 5.26. In

the very near wake, the computed velocity profiles do not compare well

with the experimental data near the wake centerline. In this region,

the velocity gradients are very large and the NPM method had difficulty

computing them. In the outer flow region, the velocity profile is very

well predicted owing to the strong influence of the boundary layer which

was reasonably well captured. The nature of the turbulence is very

complicated near the centerline of the wake and the algebraic turbulence

model does not seem to have the power to resolve the strong interaction.

The far wake is only adequately predicted. The wake centerline

position is below the measured position and the wake spreading is less

than measured. The wake spreading is a strong function of the

turbulence and the ad hoe approximations made in the algebraic

turbulence model may contribute to the poor prediction.

The two-equation k-c model, which includes more physical properties

in its formulation, was used in an effort to improve the prediction.

The convergence history shown in Figure 5.27 is almost identical to that

using the algebraic eddy viscosity model. The extra physics included in

the k-c model have indeed improved the prediction of the wake flow.

The computed centerline velocity, shown in Figure 5.28, indicates the

improved prediction accuracy especially in the far wake region. The

wake defect is again underpredicted in the near wake region by a
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substantial amount, however, in the far wake, the defect matches the

[] experimental data almost exactly. The spreading rate is also accurately

predicted in the far wake.

The wake velocity profiles computed with the k-c model are shown in

Figure 5.29. Again the boundary layer profiles are reasonably well

predicted, however, the near wake profiles show the same lack of

agreement with the centerline data as with the computation with the

algebraic model. In the far wake, the advantages of the k-e model are

clear with excellent agreement between the computation and the

measurements. The wake centerline position as well as the wake

spreading is accurately predicted even though the near wake predictions

were not as accurate. This leads one to believe that the far wake is

not strongly influenced by the near wake. Overall, the prediction using

* the k-c model is superior to the prediction using the algebraic model

for all regions of the flow. The computed turbulence intensities are

compared to the experimental data for the near wake region in Figure

5.30. On the the blade surface, the turbulence intensities compare very

well with the data. This is not surprising since the established k-c

model has been 'fine tuned' for wall bounded shear layers. In the near

wake region, the peak intensities are not well captured. This can be

attributed to the overprediction of the turbulence dissipation. For

some coarse grid computations, this turbulence dissipation was so large

that no turbulence could be sustained past the near wake region. Thus,

there appears to be some grid dependence for this wake flow. It should

be noted, though, that for a successful wake computation, special care

had to be taken to ensure that the flow did not separate at the trailing

edge. Such a situation generated incorrect turbulence kinetic energy
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and turbulence dissipation distributions in the strong interaction

region which generally leads to divergent behavior.

The computed pressure distribution in the wake region is shown in

Figure 5.31. The most important observation is that, while the

streamwise pressure gradient in the outer flow is nearly constant, the

pressure drops dramatically near the wake centerline close to the

trailing edge. This localized effect is due to the acceleration of the

wake centerline velucities. Thus, the transverse pressure gradient is

not constant across the shear layer in the near wake region even for a

non curving wake.

5.5 Flow in an Axial Flow Compressor Rotor

The final test of the NPM method was on the PSU axial flow

compressor rotor. The facility is described in depth by Lakshminarayana

(1980). The hub to tip ratio is 0.5 with the radius of the annulus wall

being 0.466 meters. The rotor is made up of 21 NACA 65-010 blades with

o o
the stagger angle varying from 22.5 at the hub to 45 at the tip. The

overall performace of this compressor is given in Figure 5.32. The

cowputations performed here were for the design flow coefficient of

*=0.56. Although the tip clearance region is roughly 0.15 cm, the tip

clear,'nce effects were not included in the computation. Also, the

measured relative inlet Mach number is 0.085 and the Mach number based

on tip speed is 0.153 thus the assumption of incompressibility is valid.

The inviscid inlet conditions at the leading edge and the initial

inviscid pressure field were generated by stacking several two-

dimensional panel solutions using Giesing's (1964) program. Turbulent

slip boundary conditions were used on all blade surfaces. Major
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difficulties were encountered when the k-e turbulence model was applied

to this case, thus the computation was performed using the algebraic

eddy viscosity model.

The convergence history for the rotor computation using a equal to

25 can be seen in Figure 5.33. Convergence of one and one half orders

of magnitude was achieved in 100 global iterations. The computation was

stopped to conserve CPU time. The computed pressure distribution at

various radial locations is compared to the experimental data of Sitaram

and Lakshminarayana (1983) in Figures 5.34 through 5.37. The suction

peak is well captured near the mid-span, however, it is overpredicted in

the hub wall region. The suction side pressure distribution agrees

favorably with the experimental data. The pressure side Cp agrees well

with the data at a hub to tip ratio R=0.832, however, at lower values of

R, a hump in the computed distribution is present near the trailing

edge. This may have arisen from the fact that the wake region has not

been computed and without the interaction of the wake, the flow turns

very sharply (locally) to follow the blade trailing edge rather than

following the outer inviscid flow. Such turning tends to increase lift

which is evident in the computed pressure distribution.

The computed suction side boundary layer profiles are compared to

the hot wire data of Pouagare et al. (1985) in Figure 5.38. The

agreement with the data is good near the hub and mid-span regions. At

R=0.918, the prediction accuracy is less than adequate. It is important

to remember that the tip clearance effect has not been included in the

computation and the measured data at this location may indeed include

the interaction of the leakage jet with the blade boundary layer. Near

the trailing edge, the boundary layer profiles are not well predicted

p - Pb ... .
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which may be due to the lack of wake interaction in the computation.

The computed pressure side boundary layer profiles are compared to

the experimental data in Figure 5.39. Here, the agreement is not good.

These boundary layers are so thin that the measurements must be suspect

in the error analysis. Even so, the computed profiles do not show the

proper character at R=O.750. This may be due to the poor pressure

prediction. The computed radial velocity profiles at S=.99 for the

pressure and suction side are compared to the data in Figure 5.40. The

results are qualitatively correct, however, the magnitudes are somewhat

underpredicted. This may be due to the the use of the turbulent slip

boundary condition. The radial flow near the blade surface is driven by

the normal gradient of the streamwise velocity. Thus, since the slip

condition effectively reduces this gradient, the radial flows will not

develop as is the case. The computed hub wall boundary layer is

compared to the experimental data in Figure 5.41. The boundary layer

growth on the hub wall is well captured as is the actual profile. The

m computed secondary flow vectors are compared to the experimental data of

Murthy and Lakshminarayana (1987) in the hub wall region in Figures 5.42

through 5.44. Overall, the secondary flow has the correct trend near

the hub wall, however, the magnitude is slightly overpredicted.

Although artificial, due to the lack of tip clearance modelling, a

passage vortex can be seen developing near the annulus wall in Figure

5.42a. Radial flows are small at this streamwise station. At Sz.58, in

Figure 5.43a, the radial flows are stronger as are the secondary flows.

The passage vortex near the annulus wall is more strongly developed.

Finally, the radial flows are so strong at S=1.0, see Figure 5.44a, that

much of the mid-span momentum is convected to the blade tip. This may
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be another reason for the poor boundary layer predictions at S=.99. The

interaction of the tip leakage jet tends to slightly reduce these radial

flows so perhaps a more accurate computation can be achieved with some

tip clearance modelling. In the hub wall region, however, the

comparison with the data is very good at this streamwise station.

Overall, the major features of the rotor flow have been captured

accurately.

Finally, the computed stagnation pressure loss coefficient, 4loss,

based on the blade tip speed is compared to the experimental data at the

exit in Figure 5.45. The agreement with the data is surprisingly good.

The losses on the pressure side are somewhat underpredicted and the

computed loss core, near n/c=O.3, is closer to the suction side than the

measured location of n/c=O.4. Still, the stagnation pressure loss is

* one of the most difficult flow quantities to capture and the NPM method

has done a reasonably good job of computing it.

U l i l l l l iu l l I i I' l " i . . .I. .
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CHAPTER 6

n

CONCLUDING REMARKS

6.1 Summary of Conclusions

Existing single pass space-marching methods for solving the

partially parabolized Navier-Stok3s equation have various drawbacks

associated with their use on complex flows. Several require Poisson

correction equations which are cumbersome to use and/or do not yield the

viscous pressure field. One method in particular due to Pouagare and

Lakshminarayana (1986), refered to as the PL method, overcomes many of

these drawbacks. The PL method, however, was found through analysis to

be unconditionally unstable when used as an iterative, multiple pass,

parabolic-marching method. This restricts its usefullness in predicting

flows with strong pressure interaction. The PL method was capable of

m computing many mildly elliptic internal flows because the continuity

equation was directly coupled to the momentum equations in the solution

process and the streamwise pressure gradient condition was relaxed.

This relaxation of the streamwise pressure gradient was the reason for

the global instability, where global refers to multiple passes of the

domain.

A modification was made to the PL method in an effort to improve its

global stability characteristics. The modified PL method, refered to as

the MPL method, relaxed the transverse pressure gradients still keeping

the continuity equation coupled to the momentum equations. Analysis

showed that this system was stable for a forward-marching integration of
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the equation yet globally unstable for multiple passes of the domain.

Clearly, for global stability, the pressure gradients must not bc

relaxed. Since some condition must be relaxed for the solution of the

coupled form of the Navier-Stokes equation on complex geometries, the

continuity equation was determined to oe the appropriate condition to

relax.

Following pseudocompressibility theory, a pressure term was

introduced into the continuity equation giving a system which appears

similar to Chorin's ('967) method but with no timewise gradients. The

new parabolic-marchii g method or NPM method was found to be stable when

a forward-marching integration was used used as a solution procedure.

Most importantly, the NPM method was found to be unconditionally stable

for a multiple pass, global iteration procedure. The value of the

relaxation narameter in the continuity equation was found to vary from

zero to t'irty with a general trend of increasing value for increasing

flow complexity. In addition, the mass flow was found to be conse.ved

at convergence, aowever, convergence was generally slow as is typical. of

parab-lic-marching methods.

The LBI scheme used to solve the equation in the cross plane was

found to introdu, an inconsistent splitting error when used in

parabolic-marching methods. This splitting error is strongly dependent

upon the way in which the main vector operator in the LBI scheme is

split and reduces accuracy significantly. Depending upon the flow under

consideration, use of one splitting order over the other can lead to

divergent behavior. This was demonstrated for the laminar flow in a

strongly curved duct. A new iterative solution procedure was developed

which reduces the effect of the splitting error and gives a result which
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maintains the formal second order accuracy of the discretization.

The NPM method using the new solution procedure wa3 calibrated by

computing the developing flow in a straight square duct as well as the

laminar flow in an S-shaped square duct. The agreement with the

analysis and the experimental data was excellent in all regions of the

flows. Since the streamwise diffusion of momentum was neglected to give

the partially parabolized Navier-Stokes equation, the flow 'sees' a

change in curvature through the pressure field only. Without proper

transmittion of pressure ellipticity, accurate comparisons with the data

are impossible. The results presented in this work are very accurate

for the laminar flow; thus, the S-shaped duct computation showed that

pressure ellipticity could be transmitted effectively using the NPM

method. Further validation of the NPM method was carried out on several

complex, turbulent flows. The turbulent flow in an S-shaped duct was

computed with good agreement with the available experimental data. The

bulk pressure drop was overpredicted but the transverse gradients due to

the duct curvature were well captured. The error in the bulk pressure

drop may be due to a poor prediction near the walls. When the accuracy

exhibited for the laminar flow is considered, one must suspect the

extension to three dimensions of the two-dimensional Baldwin and Lomax

(1978) algebraic eddy viscosity model as one reason for the error.

The two equation k-c turbulence model was used to compute the flow

in a rectilinear end wall turbine cascade. The end wall flow

computation compared very well to the experimental data. The

development of the passage vortex was accurately captured as was the

pressure distribution. The wake of a similiar cascade was computed

using both the algebraic eddy viscosity model and the k-c model. The
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computed near wake flow compared very well to the experimental data in

the outer region and only adequately near the wake centerline. The far

wake, however, was not well predicted with the algebraic eddy viscosity

model. Indeed, both the location of the wake centerline and the wake

decay did not match the data. Recall that the wake spreading is a

strong function of the turbulence and the degree of empericism and lack

of physical considerations found in the algebraic turbulence model

yielded a spreading rate that was too slow. On the other hand, when the

k-c model was used, the far wake computation was extremely accurate.

Finally, the flow in an axial flow compressor rotor was computed

using the NPM method. This particular flow proved to be very difficult

to compute. The algebraic eddy viscosiy model was used for the simple

reason that both the k-c model and the ARSM showed divergent behavior

for reasons unknown to the author. Perhaps the forward-marching

solution procedure used for the k and c equations is not appropriate

for this type of flow. The suction side boundary layers as well as the

pressure distribution were well predicted. The computed pressure side

boundary layers and the exit radial flows did not compare well with the

experimental data. The lack of accuracy for the radial flows may be

attributed to the use of the turbulent slip condition which tends to

reduce che near wall normal gradient of the streamwise velocity. This

gradient is the main mechanism driving the radial flows near the blade

surfaces. The secondary flows were well predicted near the hub wall as

were the stagnation pressure losses at the rotor exit.

Overall, the NPM method showed its usefullness in computing

turbulent turboachinery flows. The rotor computation will require more

modelling, a finer grid, and integration of the wake flow if a more
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accurate prediction is to be achieved.

6.2 Suggestions for Future Research

Future research into the application of the NPM method should

include the development of a method for accelerating the convergence of_

the scheme. Many iterative methods have incorporated multigrid type

algorithms to enhance convergence. Such a method may be successfully

incorporated into the NPM method. Since only pressure information needs

to be quckly propagated from downstream to upstream, an approximate form

of the Poisson equation for the pressure, similar to the one used by

Tenpas and Pletcher (1987), may be sufficient to significantly improve

the convergence.

Another area where the NPM method can be improved is the iterative

LBI method employed at each streamwise station. There may be faster

iterative schemes available which will yield the same result.

Finally, the area which needs the most attention and which is

vitally important to the successful computation of complex flows is

turbulence modelling, or rather the application of existing turbulence

models to the unique problems in turbomachinery. Often, ad hoc

approximations are required in order to achieve a converged solution.

These approximations, e.g., location of transition, have a substantial

effect on the outcome of a computation. What is required is a

L systematic study of the established turbulence models and their .

extension to three-dimensional turbomachinery flows.

I}
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APPENDIX

COMPUTATIONAL GRID GENERATION

The governing equation must be solved on discrete points in the

physical domain. For logistical reasons, the distribution of points is

not random. Applying the boundary conditions is the most complicated

aspect of the numerical method and is simplified by writing the

equations in generalized coordinates. What is now required is to

generate the distribution of points in the physical domain which is

aligned with the generalized coordinates.

There are three types of point distributions or grids. They are 0-

*grids, C-grids, and H-grids. For a parabolic solution procedure for the

mean flow equations, the 0-grids and C-grids cannot be used. This is

because the grid line along which the equations are marched is not

necessarily aligned with the streamwise direction. For both grids, in

the leading edge region, the marching direction is perpendicular to the

streamwise direction. This is also the case in the trailing edge region

for O-grids. Thus, only H-grids can be used for the computation of

turbomachinery flows with a parabolic marching scheme.

There are several methods for generating these H-grids which can be

grouped into partial differential equation methods and algebraic

methods. The PDE method, of course, solves partial differential

equations to generate the distribution of computational points. With

such methods, the user has great control of orthogonality of the grid

lines in the physical domain. With algebraic methods, orthogonality of

r



197

the grid lines is not always assured. In fact, the grid lines can be

highly sheared for periodic grids for cascade geometries with large

stagger. This shearing of the grid is detrimental to the accuracy of

partially parabolized methods since the second order cross derivatives

with respect to the streamwise direction are neglected. These cross

derivatives are very important in viscous flows with a non-orthogonal

grid. However, if a PDE method is used to generate the grid, large

bulges appear in the leading and trailing edge regions due to the

enforcement of orthogonality. Experience has shown that this leads to

numerical problems which inhibit the computation of the flow.

Therefore, an algedraic grid is used here for the computation of

turbomachinery flows.

fhe following describes the method used here to generate three-

dimensional grids for a turbomachinery rotor in the R-8-Z coordinate

system. First, pseudo-streamsheets must be generated, i.e., two-

dimensional grids in the R-6 plane. These streamsheets are refered to

as 'pseudo' since they are determined by the geometry of the hub and

annulus walls and not by the flow. With the hub boundary and annulus

boundary defined from the input data, an arbitrary number of points is

chosen along the machine axis to define the pseudo-streamsheets. A

uniform distribution is sufficient. Lines are then extended from these

points through the hub terminating at the annulus. The corresponding

values of R and Z for each line are determined through bilinear

interpolation using the input data.

With these lines now generated, a distribution of points in the Z-

direction is chosen. Typically, exponential stretching is used to pack

grid points near the walls where large flow gradients are anticipated.



198

When completed for each line, the result is a two-dimensional grid in

the R-Z plane where the streamwise grid lines are the cylindrical

pseudo-streamsheets. Two-dimensional H-grids are now generated on the

pseudo-streamsheets using the following procedure.

First, a new blade profile is interpolated from the input data for a

particular streamsheet. This new profile is then split into a lower and

upper half and the lower half is shifted in the negative 8 direction by

an amount equal to 2/number of blades. This provides an upper and

lower bound for the grid. Next, the upper and lower boundaries are

extended upstream and downstream of the blades in the Z-direction to the

predetermined extents of the domain. Now the axial distribution of

points must be generated. Once again, exponential stretching is used to

pack grid points near the leading and trailing edges of the blades.

* Finally, the two-dimensional grid is completed by generating a

distribution of points in the 8 direction as was done when the pseudo-

streamsheets were generated. When completed for each streamsheet, the

stacked two-dimensional grids form a smooth three-dimensional algebraic

periodic H-grid for a turbomachinery blade row. An example is given in

Figure A.1. It should be noted that H-grids have a geometric

discontinuity at the leading edge and so the computation in that region

may be less accurate. A.so, H-grids are not recommended for blunt

leading edge airfoils.

I.
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a) O-Z plane at mid-span..

Figure A.1 Algebraic 3-D Periodic H-Grid
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b) R-O plane at mid-chord.

Figure A.1 Algebraic 3-D Periodic H-Grid
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